Skip to content
Volume 67, Issue 2
  • ISSN: 2056-5135


The main challenges of compressed natural gas (CNG) engine fuelling in terms of methane abatement in the aftertreatment system are addressed in this study using differently loaded platinum group metal (pgm) catalysts. A dual-fuel injection strategy of methane-gasoline was implemented where methane gas was port-injected into the intake in stoichiometric conditions at levels corresponding to 20% and 40% energy density replacement of gasoline fuel. High, medium and low loaded palladium-rhodium catalysts were used and compared to study the effect of pgm loading on the catalyst light-off activity for methane. Results indicate that increasing the palladium loading led to significantly earlier light-off temperatures achieved at relatively lower temperatures of 340°C, 350°C and 395°C respectively. However, the benefit diminishes above palladium loading >142.5 g ft–3. The study has also demonstrated that ammonia is formed over the CNG catalyst due to steam-reforming reactions from the increased levels of methane in the exhaust with dual-fuelling. Hence aftertreatment technologies such as selective catalytic reduction (SCR) should be adopted to remove them. This further highlights the need to regulate the harmful ammonia emissions from future passenger cars fuelled with CNG. In addition, the benefits of the dual-fuel system in terms of lower engine output carbon dioxide, non-methane hydrocarbon (NMHC) and particulate matter (PM) emissions compared to the gasoline direct injection (GDI) mode alone are presented.


Article metrics loading...

Loading full text...

Full text loading...



  1. Cho H. M., and He B.-Q. Energy Convers. Manag., 2007, 48, (2), 608 LINK [Google Scholar]
  2. Korakianitis T., Namasivayam A. M., and Crookes R. J. Prog. Energy Combust. Sci., 2011, 37, (1), 89 LINK [Google Scholar]
  3. Wahbi A., Tsolakis A., Herreros J., Agarwal A. K., Krishnan S. R., and Mulone V. ‘Emissions Control Technologies for Natural Gas Engines’, in “Natural Gas Engines: For Transportation and Power Generation”, eds. Srinivasan K. K., Springer Nature Singapore Pte, Singapore, 2019, pp. 359379 LINK [Google Scholar]
  4. Tabar A. R., Hamidi A. A., and Ghadamian H. Int. J. Energy Environ. Eng., 2017, 8, (1), 37 LINK [Google Scholar]
  5. Obiols J., Soleri D., Dioc N., and Moreau M. SAE Technical Paper 2011-01-1995, SAE International, Warrendale, USA, 30th August, 2011 LINK [Google Scholar]
  6. Singh E., Morganti K., and Dibble R. Fuel, 2019, 237, 694 LINK [Google Scholar]
  7. Chen Z., Wang L., and Zeng K. Energy Convers. Manag., 2019, 192, 11 LINK [Google Scholar]
  8. Xu Y., Zhang Y., Gong J., Su S., and Wei Z. Fuel, 2020, 266, 116957 LINK [Google Scholar]
  9. Lehtoranta K., Murtonen T., Vesala H., Koponen P., Alanen J., Simonen P., Rönkkö T., Timonen H., Saarikoski S., Maunula T., Kallinen K., and Korhonen S. Emiss. Control Sci. Technol., 2017, 3, (2), 142 LINK [Google Scholar]
  10. Raj A. Johnson Matthey Technol. Rev., 2016, 60, (4), 228 LINK [Google Scholar]
  11. Chen H., He J., and Zhong X. J. Energy Inst., 2019, 92, (4), 1123 LINK [Google Scholar]
  12. Tree D. R., and Svensson K. I. Prog. Energy Combust. Sci., 2007, 33, (3), 272 LINK [Google Scholar]
  13. Karavalakis G., Durbin T. D., Villela M., and Miller J. W. J. Nat. Gas Sci. Eng., 2012, 4, 8 LINK [Google Scholar]
  14. Alanen J., Saukko E., Lehtoranta K., Murtonen T., Timonen H., Hillamo R., Karjalainen P., Kuuluvainen H., Harra J., Keskinen J., and Rönkkö T. Fuel, 2015, 162, 155 LINK [Google Scholar]
  15. Nithyanandan K., Lin Y., Donahue R., Meng X., Zhang J., and Lee C. Fuel, 2016, 184, 145 LINK [Google Scholar]
  16. Dhainaut F., Pietrzyk S., and Granger P. Catal. Today, 2007, 119, (1–4), 94 LINK [Google Scholar]
  17. Salaün M., Kouakou A., Da Costa S., and Da Costa P. Appl. Catal. B: Environ., 2009, 88, (3–4), 386 LINK [Google Scholar]
  18. Monai M., Montini T., Gorte R. J., and Fornasiero P. Eur. J. Inorg. Chem., 2018, (25), 2884 LINK [Google Scholar]
  19. Marques R., Capela S., Da Costa S., Delacroix F., Djéga-Mariadassou G., and Da Costa P. Catal. Commun., 2008, 9, (8), 1704 LINK [Google Scholar]
  20. Ren Y., Lou D., Tan P., Zhang Y., and Sun X. J. Clean. Prod., 2021, 298, 126833 LINK [Google Scholar]
  21. Sakai T., Choi B.–C., Osuga R., and Ko Y. ‘Purification Characteristics of Catalytic Converters for Natural Gas Fueled Automotive Engine’, SAE Technical Paper No. 912599, SAE International, Warrendale, USA, 1991 LINK [Google Scholar]
  22. Trivedi S., Prasad R., Mishra A., Kalam A., and Yadav P. Environ. Sci. Pollut. Res., 2020, 27, (32), 39977 LINK [Google Scholar]
  23. Chen J., Wu Y., Hu W., Qu P., Zhang G., Jiao Y., Zhong L., and Chen Y. Ind. Eng. Chem. Res., 2019, 58, (16), 6255 LINK [Google Scholar]
  24. Bogarra M., Herreros J. M., Hergueta C., Tsolakis A., York A. P. E., and Millington P. J. Johnson Matthey Technol. Rev., 2017, 61, (4), 329 LINK [Google Scholar]
  25. Rusu A. O., and Dumitriu E. Environ. Eng. Manag. J., 2003, 2, (4), 273 LINK [Google Scholar]
  26. Pradhan S., Thiruvengadam A., Thiruvengadam P., Demirgok B., Besch M., Carder D., and Sathiamoorthy B. SAE Int. J. Engines, 2017, 10, (1), 104 LINK [Google Scholar]
  27. Zhang Q., Li M., Shao S., and Li G. Appl. Therm. Eng., 2018, 130, 1363 LINK [Google Scholar]
  28. Suarez-Bertoa R., Zardini A. A., and Astorga C. Atmos. Environ., 2014, 97, 43 LINK [Google Scholar]
  29. Oh S. H., and Triplett T. Catal. Today, 2014, 231, 22 LINK [Google Scholar]
  30. Ramanathan K., Sharma C. S., and Kim C. H. Ind. Eng. Chem. Res., 2012, 51, (3), 1198 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error