Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135
  • oa Rechargeable Multi-Valent Metal-Air Batteries

    A review of research and current challenges in secondary multivalent metal-oxygen batteries

  • Authors: By Laurence J. Hardwick1 and Carlos Ponce de León2
  • Affiliations: 1 Stephenson Institute for Renewable Energy, Department of Chemistry, The University of LiverpoolPeach Street, Liverpool, L69 7ZDUK 2 Faculty of Engineering and the Environment, University of SouthamptonHighfield, Southampton, SO17 1BJUK
  • Source: Johnson Matthey Technology Review, Volume 62, Issue 2, Apr 2018, p. 134 - 149
  • DOI: https://doi.org/10.1595/205651318X696729
    • Published online: 01 Jan 2018

Abstract

Rechargeable metal-oxygen cells could exceed the stored energy of today’s most advanced lithium-ion cells. However challenges exist that must be overcome to bring this technology into practical application. These challenges include, among others, the recharge and cyclability efficiency, materials development and improvements in fundamental understanding of the electrochemistry and chemistry inside the cell. The common challenges for the anode, including corrosion, passivation and dendrite formation and those for the air cathode and the electrolyte are summarised in this review for cells based on magnesium, calcium, aluminium, silicon, zinc and iron.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696729
2018-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Hardwick_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696729&mimeType=html&fmt=ahah

References

  1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nature Mater., 2012, 11, 19 LINK https://doi.org/10.1038/nmat3191 [Google Scholar]
  2. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett., 2010, 1, (14), 2193 LINK https://doi.org/10.1021/jz1005384 [Google Scholar]
  3. J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater., 2011, 1, (1), 2 LINK https://doi.org/10.1002/aenm.201190001 [Google Scholar]
  4. G. L. Leclanché, ‘Improvement in Combining Generating and Secondary or Accumulating Galvanic Battery’, US Patent, 64, 113; 1867 [Google Scholar]
  5. D. Aurbach, B. D. McCloskey, L. F. Nazar, P. G. Bruce, Nature Energy, 2016, 1, (9), 16128 LINK https://doi.org/10.1038/nenergy.2016.128 [Google Scholar]
  6. A. C. Luntz, B. D. McCloskey, Chem. Rev., 2014, 114, (23), 11721 LINK https://doi.org/10.1021/cr500054y [Google Scholar]
  7. X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy Environ., 2016, 1, (1), 4 LINK https://doi.org/10.1016/j.gee.2016.04.004 [Google Scholar]
  8. F. Li, J. Chen, Adv. Energy Mater., 2017, 7, (24), 1602934 LINK https://doi.org/10.1002/aenm.201602934 [Google Scholar]
  9. C. L. Bender, D. Schröder, R. Pinedo, P. Adelhelm, J. Janek, Angew. Chem. Int. Ed., 2016, 55, (15), 4640 LINK https://doi.org/10.1002/anie.201510856 [Google Scholar]
  10. P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein J. Nanotechnol., 2015, 6, 1016 LINK https://doi.org/10.3762/bjnano.6.105 [Google Scholar]
  11. Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nature Commun., 2013, 4, 1805 LINK https://doi.org/10.1038/ncomms2812 [Google Scholar]
  12. Y. Liu, Q. Sun, W. Li, K. R. Adair, J. Li, X. Sun, Green Energy Environ., 2017, 2, (3), 246 LINK https://doi.org/10.1016/j.gee.2017.06.006 [Google Scholar]
  13. T. Zhang, Z. Tao, J. Chen, Mater. Horiz., 2014, 1, (2), 196 LINK https://doi.org/10.1039/C3MH00059A [Google Scholar]
  14. T. Khoo, A. Somers, A. A. J. Torriero, D. R. MacFarlane, P. C. Howlett, M. Forsyth, Electrochim. Acta, 2013, 87, 701 LINK https://doi.org/10.1016/j.electacta.2012.09.072 [Google Scholar]
  15. N. Wang, R. Wang, Y. Feng, W. Xiong, J. Zhang, M. Deng, Corrosion Sci., 2016, 112, 13 LINK https://doi.org/10.1016/j.corsci.2016.07.002 [Google Scholar]
  16. S. Yuan, H. Lu, Z. Sun, L. Fan, X. Zhu, W. Zhang, J. Electrochem. Soc., 2016, 163, (7), A1181 LINK https://doi.org/10.1149/2.0371607jes [Google Scholar]
  17. H. Xiong, K. Yu, X. Yin, Y. Dai, Y. Yan, H. Zhu, J. Alloys Comp., 2017, 708, 652 LINK https://doi.org/10.1016/j.jallcom.2016.12.172 [Google Scholar]
  18. G. Vardar, J. G. Smith, T. Thompson, K. Inagaki, J. Naruse, H. Hiramatsu, A. E. S. Sleightholme, J. Sakamoto, D. J. Siegel, C. W. Monroe, Chem. Mater., 2016, 28, (21), 7629 LINK https://doi.org/10.1021/acs.chemmater.6b02488 [Google Scholar]
  19. C.-S. Li, Y. Sun, F. Gebert, S.-L. Chou, Adv. Energy Mater., 2017, 7, (24), 1700869 LINK https://doi.org/10.1002/aenm.201700869 [Google Scholar]
  20. R. P. Hamlen, E. C. Jerabek, J. C. Ruzzo, E. G. Siwek, J. Electrochem. Soc., 1969, 116, (11), 1588 LINK https://doi.org/10.1149/1.2411622 [Google Scholar]
  21. D. Aurbach, R. Skaletsky, Y. Gofer, J. Electrochem. Soc., 1991, 138, (12), 3536 LINK https://doi.org/10.1149/1.2085455 [Google Scholar]
  22. A. Ponrouch, C. Frontera, F. Bardé, M. R. Palacín, Nature Mater., 2016, 15, 169 LINK https://doi.org/10.1038/nmat4462 [Google Scholar]
  23. P. Reinsberg, C. J. Bondue, H. Baltruschat, J. Phys. Chem. C, 2016, 120, (39), 22179 LINK https://doi.org/10.1021/acs.jpcc.6b06674 [Google Scholar]
  24. T. Shiga, Y. Kato, Y. Hase, J. Mater. Chem. A, 2017, 5, (25), 13212 LINK https://doi.org/10.1039/C7TA03422A [Google Scholar]
  25. N. U. Pujare, K. W. Semkow, A. F. Sammells, J. Electrochem. Soc., 1988, 135, (1), 260 LINK https://doi.org/10.1149/1.2095574 [Google Scholar]
  26. J. F. Cooper, P. K. Hosmer, ‘The Behavior of the Calcium Electrode in Aqueous Electrolytes’, Abstract 54, 152nd Meeting, The Electrochemical Society, Atlanta, USA, 9th–14th October, 1977, p. 25 [Google Scholar]
  27. Y. Zhao, T. J. VanderNoot, Electrochim. Acta, 1997, 42, (11), 1639 LINK https://doi.org/10.1016/S0013-4686(96)00271-X [Google Scholar]
  28. M. Nestoridi, D. Pletcher, J. A. Wharton, R. J. K. Wood, J. Power Sources, 2009, 193, (2), 895 LINK https://doi.org/10.1016/j.jpowsour.2009.05.023 [Google Scholar]
  29. Q. Li, N. J. Bjerrum, J. Power Sources, 2002, 110, (1), 1 LINK https://doi.org/10.1016/S0378-7753(01)01014-X [Google Scholar]
  30. D. R. Egan, C. Ponce de León, R. J. K. Wood, R. L. Jones, K. R. Stokes, F. C. Walsh, J. Power Sources, 2013, 236, 293 LINK https://doi.org/10.1016/j.jpowsour.2013.01.141 [Google Scholar]
  31. R. Mori, RSC Adv., 2014, 4, (57), 30346 LINK https://doi.org/10.1039/c4ra02165g [Google Scholar]
  32. R. Mori, J. Electrochem. Soc., 2015, 162, (3), A288 LINK https://doi.org/10.1149/2.0241503jes [Google Scholar]
  33. R. Mori, RSC Adv., 2017, 7, (11), 6389 LINK https://doi.org/10.1039/C6RA25164A [Google Scholar]
  34. M. A. Deyab, Electrochim. Acta, 2017, 244, 178 LINK https://doi.org/10.1016/j.electacta.2017.05.116 [Google Scholar]
  35. A. R. Despić, J. Appl. Electrochem., 1985, 15, (2), 191 LINK https://doi.org/10.1007/BF00620933 [Google Scholar]
  36. G. Cohn, D. Starosvetsky, R. Hagiwara, D. D. Macdonald, Y. Ein-Eli, Electrochem. Commun., 2009, 11, (10), 1916 LINK https://doi.org/10.1016/j.elecom.2009.08.015 [Google Scholar]
  37. X. Zhong, H. Zhang, Y. Liu, J. Bai, L. Liao, Y. Huang, X. Duan, ChemSusChem, 2012, 5, (1), 177 LINK https://doi.org/10.1002/cssc.201100426 [Google Scholar]
  38. Y. E. Durmus, Ö. Aslanbas, S. Kayser, H. Tempel, F. Hausen, L. G. J. de Haart, J. Granwehr, Y. Ein-Eli, R.-A. Eichel, H. Kungl, Electrochim. Acta, 2017, 225, 215 LINK https://doi.org/10.1016/j.electacta.2016.12.120 [Google Scholar]
  39. A. Garamoun, M. B. Schubert, J. H. Werner, ChemSusChem, 2014, 7, (12), 3272 LINK https://doi.org/10.1002/cssc.201402463 [Google Scholar]
  40. D.-W. Park, S. Kim, J. D. Ocon, G. H. A. Abrenica, J. K. Lee, J. Lee, ACS Appl. Mater. Interfaces, 2015, 7, (5), 3126 LINK https://doi.org/10.1021/am507360e [Google Scholar]
  41. G. Cohn, Y. Ein-Eli, J. Power Sources, 2010, 195, (15), 4963 LINK https://doi.org/10.1016/j.jpowsour.2010.02.070 [Google Scholar]
  42. J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. Chen, Adv. Mater., 2017, 29, (7), 1604685 LINK https://doi.org/10.1002/adma.201604685 [Google Scholar]
  43. Y.-C. Lee, P.-Y. Peng, W.-S. Chang, C.-M. Huang, J. Taiwan Inst. Chem. Eng., 2014, 45, (5), 2334 LINK https://doi.org/10.1016/j.jtice.2014.05.023 [Google Scholar]
  44. X. Wu, G. Meng, W. Liu, T. Li, Q. Yang, X. Sun, J. Liu, Nano Res., 2018, 11, (1), 163 LINK https://doi.org/10.1007/s12274-017-1615-2 [Google Scholar]
  45. B. Li, X. Ge, F. W. T. Goh, T. S. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, Nanoscale, 2015, 7, (5), 1830 LINK https://doi.org/10.1039/C4NR05988C [Google Scholar]
  46. H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Adv. Mater., 2017, 29, (35), 1702327 LINK https://doi.org/10.1002/adma.201702327 [Google Scholar]
  47. B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, Adv. Funct. Mater., 2017, 27, (37), 1700795 LINK https://doi.org/10.1002/adfm.201700795 [Google Scholar]
  48. Z. Cui, Y. Li, G. Fu, X. Li, J. B. Goodenough, Adv. Mater., 2017, 29, (40), 1702385 LINK https://doi.org/10.1002/adma.201702385 [Google Scholar]
  49. Z. Cui, G. Fu, Y. Li, J. B. Goodenough, Angew. Chem. Int. Ed., 2017, 56, (33), 9901 LINK https://doi.org/10.1002/anie.201705778 [Google Scholar]
  50. J. Fu, F. M. Hassan, C. Zhong, J. Lu, H. Liu, A. Yu, Z. Chen, Adv. Mater., 2017, 29, (35), 1702526 LINK https://doi.org/10.1002/adma.201702526 [Google Scholar]
  51. W. Niu, Z. Li, K. Marcus, L. Zhou, Y. Li, R. Ye, K. Liang, Y. Yang, Adv. Energy Mater., 2018, 8, (1), 1701642 LINK https://doi.org/10.1002/aenm.201701642 [Google Scholar]
  52. Y.-T. Lu, Y.-J. Chien, C.-F. Liu, T.-H. You, C.-C. Hu, J. Mater. Chem. A, 2017, 5, (39), 21016 LINK https://doi.org/10.1039/C7TA06302D [Google Scholar]
  53. K. Vijayamohanan, T. S. Balasubramanian, A. K. Shukla, J. Power Sources, 1991, 34, (3), 269 LINK https://doi.org/10.1016/0378-7753(91)80093-D [Google Scholar]
  54. L. Öjefors, L. Carlsson, J. Power Sources, 1978, 2, (3), 287 LINK https://doi.org/10.1016/0378-7753(78)85019-8 [Google Scholar]
  55. H. Cnobloch, Proceedings of the 88th Convention of the Battery Council International Future Clean Silent Power, Mexico City, Mexico, 25th–29th April, 1976, pp. 3948 [Google Scholar]
  56. A. Inoishi, S. Ida, S. Uratani, T. Okano, T. Ishihara, RSC Adv., 2013, 3, (9), 3024 LINK https://doi.org/10.1039/C2RA23370C [Google Scholar]
  57. X. Zhao, N. Xu, X. Li, Y. Gong, K. Huang, RSC Adv., 2012, 2, (27), 10163 LINK https://doi.org/10.1039/C2RA21992A [Google Scholar]
  58. R. D. McKerracher, C. Alegre, V. Baglio, A. S. Aricò, C. Ponce de León, F. Mornaghini, M. Rodlert, F. C. Walsh, Electrochim. Acta, 2015, 174, 508 LINK https://doi.org/10.1016/j.electacta.2015.06.001 [Google Scholar]
  59. H. A. Figueredo-Rodríguez, R. D. McKerracher, M. Insausti, A. G. Luis, C. Ponce de León, C. Alegre, V. Baglio, A. S. Aricò, F. C. Walsh, J. Electrochem. Soc., 2017, 164, (6), A1148 LINK https://doi.org/10.1149/2.0711706jes [Google Scholar]
/content/journals/10.1595/205651318X696729
Loading
/content/journals/10.1595/205651318X696729
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test