Skip to content
Volume 64, Issue 4
  • ISSN: 2056-5135


Shape-memory polymers (SMPs) enable the production of stimuli-responsive polymer-based materials with the ability to undergo a large recoverable deformation upon the application of an external stimulus. Academic and industrial research interest in the shape-memory effects (SMEs) of these SMP-based materials is growing for task-specific applications. This mini-review covers interesting aspects of SMP-based materials, their properties, how they may be investigated and highlights examples of the potential applications of these materials.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lendlein A., and Gould O. E. C. Nat. Rev. Mater., 2019, 4, (2), 116 LINK [Google Scholar]
  2. Biggs T., Cortie M. B., Witcomb M. J., and Cornish L. A. Platinum Metals Rev., 2003, 47, (4), 142 LINK [Google Scholar]
  3. Kapoor D. Johnson Matthey Technol. Rev., 2017, 61, (1), 66 LINK [Google Scholar]
  4. Kudriavtsev Y. V., and Semenova E. L. Platinum Metals Rev., 2014, 58, (1), 20 LINK [Google Scholar]
  5. Oshima R., Muto S., and Hamada T. Platinum Metals Rev., 1988, 32, (3), 110 LINK [Google Scholar]
  6. Jani J. M., Leary M., Subic A., and Gibson M. A. Mater. Des., 2014, 56, 1078 LINK [Google Scholar]
  7. Naresh C., Bose P. S. C., and Rao C. S. P. ‘Shape Memory Alloys: A State of Art Review’, International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2016), Bangalore, India, 14th–16th July, 2016, IOP Conference Series: Materials Science and Engineering, Vol. 149, IOP Publishing Ltd, Bristol, UK, 2016 LINK [Google Scholar]
  8. Patil D., and Song G. Smart Mater. Struct., 2017, 26, (9), 093002 LINK [Google Scholar]
  9. Ma N., Lu Y., He J., and Dai H. J. Text. Inst., 2019, 110, (6), 950 LINK [Google Scholar]
  10. Wen C., Yu X., Zeng W., Zhao S., Wang L., Wan G., Huang S., Grover H., and Chen Z. AIMS Mater. Sci., 2018, 5, (4), 559 LINK [Google Scholar]
  11. Huang W. M., Ding Z., Wang C. C., Wei J., Zhao Y., and Purnawali H. Mater. Today, 2010, 13, (7–8), 54 LINK [Google Scholar]
  12. Liu C., Qin H., and Mather P. T. J. Mater. Chem., 2007, 17, (16), 1543 LINK [Google Scholar]
  13. Liu Y., Du H., Liu L., and Leng J. Smart Mater. Struct., 2014, 23, (2), 023001 LINK [Google Scholar]
  14. Sokolowski W., Metcalfe A., Hayashi S., Yahia L., and Raymond J. Biomed. Mater., 2007, 2, (1), S23 LINK [Google Scholar]
  15. Kumar P. K., Lagoudas D. C., ‘Introduction to Shape Memory Alloys’, in “Shape Memory Alloys”, ed. and Lagoudas D. C. Springer, Boston, USA, 2008, pp. 1–51 LINK [Google Scholar]
  16. Yu K., Xie T., Leng J., Ding Y., and Qi H. J. Soft Matter, 2012, 8, (20), 5687 LINK [Google Scholar]
  17. Hardy J. G., Palma M., Wind S. J., and Biggs M. J. Adv. Mater., 2016, 28, (27), 5717 LINK [Google Scholar]
  18. Wang K., Strandman S., and Zhu X. X. Front. Chem. Sci. Eng., 2017, 11, 143 LINK [Google Scholar]
  19. Behl M., and Lendlein A. Mater. Today, 2007, 10, (4), 20 LINK [Google Scholar]
  20. Meng H., and Li G. Polymer, 2013, 54, (9), 2199 LINK [Google Scholar]
  21. Sun L., Huang W. M., Ding Z., Zhao Y., Wang C. C., Purnawali H., and Tang C. Mater. Des., 2012, 33, 577 LINK [Google Scholar]
  22. Bellin I., Kelch S., Langer R., and Lendlein A. Proc. Natl. Acad. Sci., 2006, 103, (48), 18043 LINK [Google Scholar]
  23. Pilate F., Toncheva A., Dubois P., and Raquez J.-M. Eur. Polym. J., 2016, 80, 268 LINK [Google Scholar]
  24. Ji F., Zhu Y., Hu J., Liu Y., Yeung L.-Y., and Ye G. Smart Mater. Struct., 2006, 15, (6), 1547 LINK [Google Scholar]
  25. Mohr R., Kratz K., Weigel T., Lucka-Gabor M., Moneke M., and Lendlein A. Proc. Natl. Acad. Sci., 2006, 103, (10), 3540 LINK [Google Scholar]
  26. Leng J., Lan X., Liu Y., and Du S. Prog. Mater. Sci., 2011, 56, (7), 1077 LINK [Google Scholar]
  27. Yang B., Huang W. M., Li C., and Li L. Polymer, 2006, 47, (4), 1348 LINK [Google Scholar]
  28. Sahoo N. G., Jung Y. C., and Cho J. W. Mater. Manuf. Processes, 2007, 22, (4), 419 LINK [Google Scholar]
  29. Lendlein A., Jiang H., Jünger O., and Langer R. Nature, 2005, 434, 879 LINK [Google Scholar]
  30. Lendlein A., and Langer R. Science, 2002, 296, (5573), 1673 LINK [Google Scholar]
  31. Inoue K., Yamashiro M., and Iji M. J. Appl. Polym. Sci., 2009, 112, (2), 876 LINK [Google Scholar]
  32. Vernon L. B., and Vernon H. M. The Vernon Benshoff Company, ‘Process of Manufacturing Articles of Thermoplastic Synthetic Resins’, US Patent 2,234,993; 1941
  33. Rainer W. C., Redding E. M., Hitov J. J., Sloan A. W., Stewart W. D., and Grace W. R. Co, ‘Polyethylene Product and Process’, US Patent 3,144,398; 1964
  34. Hu J., Zhu Y., Huang H., and Lu J. Prog. Polym. Sci., 2012, 37, (12), 1720 LINK [Google Scholar]
  35. Lendlein A., and Kelch S. Angew. Chem. Int. Ed., 2002, 41, (12), 2034 LINK;2-M [Google Scholar]
  36. Ota S. Radiat. Phys. Chem., 1981, 18, (1–2), 81 LINK [Google Scholar]
  37. Zhao Q., Qi H. J., and Xie T. Prog. Polym. Sci., 2015, 49–50, 79 LINK [Google Scholar]
  38. Wu X., Huang W. M., Zhao Y., Ding Z., Tang C., and Zhang J. Polymers, 2013, 5, (4), 1169 LINK [Google Scholar]
  39. Bai Y., Zhang J., and Chen X. ACS Appl. Mater. Interfaces, 2018, 10, (16), 14017 LINK [Google Scholar]
  40. Yu K., Liu Y., and Leng J. RSC Adv., 2014, 4, (6), 2961 LINK [Google Scholar]
  41. Rousseau I. A., and Mather P. T. J. Am. Chem. Soc., 2003, 125, (50), 15300 LINK [Google Scholar]
  42. Caprasse J., Defize T., Riva R., and Jérôme C. ‘Comparative Study of PCL Shape-Memory Networks with Diels-Alder or Alder-ene Adducts’, Advanced Functional Polymers for Medicine (AFPM), Montpellier, France, 16th–18th May, 2018 LINK [Google Scholar]
  43. Defize T., Riva R., Raquez J.-M., Dubois P., Jérôme C., and Alexandre M. Macromol. Rapid Commun., 2011, 32, (16), 1264 LINK [Google Scholar]
  44. Lai H.-Y., Wang H.-Q., Lai J.-C., and Li C.-H. Molecules, 2019, 24, (18), 3224 LINK [Google Scholar]
  45. Iqbal D., and Samiullah M. H. Materials, 2013, 6, (1), 116 LINK [Google Scholar]
  46. Maitland D. J., Metzger M. F., Schumann D., Lee A., and Wilson T. S. Lasers Surg. Med., 2002, 30, (1), 1 LINK [Google Scholar]
  47. Xie H., Yang K.-K., and Wang Y.-Z. Prog. Polym. Sci., 2019, 95, 32 LINK [Google Scholar]
  48. Yuan Z., Muliana A., and Rajagopal K. R. Math. Mech. Solids, 2016, 22, (5), 1116 LINK [Google Scholar]
  49. Havens E., Snyder E. A., and Tong T. H. ‘Light-Activated Shape Memory Polymers and Associated Applications’, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, California, USA, 5th May, 2005, “Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies”, Vol. 5762, Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, USA, 2005, 8 pp LINK [Google Scholar]
  50. Liu Y., Lv H., Lan X., Leng J., and Du S. Compos. Sci. Technol., 2009, 69, (13), 2064 LINK [Google Scholar]
  51. Lu H., Yao Y., and Lin L. Pigm. Resin Technol., 2014, 34, (1), 26 LINK [Google Scholar]
  52. Alam J., Khan A., Alam M., and Mohan R. Materials, 2015, 8, (9), 6391 LINK [Google Scholar]
  53. Zhang J., Ke X., Gou G., Seidel J., Xiang B., Yu P., Liang W.-I., Minor A. M., Chu Y., Van Tendeloo G., Ren X., and Ramesh R. Nat. Commun., 2013, 4, 2768 LINK [Google Scholar]
  54. Gong X., Liu L., Liu Y., and Leng J. Smart Mater. Struct., 2016, 25, (3), 035036 LINK [Google Scholar]
  55. Zhou J., Li H., Tian R., Dugnani R., Lu H., Chen Y., Guo Y., Duan H., and Liu H. Sci. Rep., 2017, 7, 5535 LINK [Google Scholar]
  56. Lee S.-K., Lee S.-J., An H.-J., Cha S.-E., Chang J.-K., Kim B., and Pak J. J. ‘Biomedical Applications of Electroactive Polymers and Shape-Memory Alloys’, SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, USA, 11th July, 2002, “Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD)”, Vol. 4695, Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, USA, 2002, 15 pp LINK [Google Scholar]
  57. Sahoo N. G., Jung Y. C., Yoo H. J., and Cho J. W. Compos. Sci. Technol., 2007, 67, (9), 1920 LINK [Google Scholar]
  58. Sahoo N. G., Jung Y. C., Goo N. S., and Cho J. W. Macromol. Mater. Eng., 2005, 290, (11), 1049 LINK [Google Scholar]
  59. Zhou G., Zhang H., Xu S., Gui X., Wei H., Leng J., Koratkar N., and Zhong J. Sci. Rep., 2016, 6, 24148 LINK [Google Scholar]
  60. Dahmardeh M., Ali M. S. M., Saleh T., Hian T. M., Moghaddam M. V., Nojeh A., and Takahata K. Phys. Status Solidi A, 2013, 210, (4), 631 LINK [Google Scholar]
  61. Gilbert H. B., and Webster R. J. IEEE Robot. Autom. Lett., 2016, 1, (1), 98 LINK [Google Scholar]
  62. Xie M., Wang L., Ge J., Guo B., and Ma P. X. ACS Appl. Mater. Interfaces, 2015, 7, (12), 6772 LINK [Google Scholar]
  63. Tanaka H., and Honda K. J. Polym. Sci. Pol. Chem., 1977, 15, (11), 2685 LINK [Google Scholar]
  64. Luo H., Hu J., and Zhu Y. Mater. Letters, 2012, 89, 172 LINK [Google Scholar]
  65. Gong C., Liang J., Hu W., Niu X., Ma S., Hahn H. T., and Pei Q. Adv. Mater., 2013, 25, (30), 4186 LINK [Google Scholar]
  66. Luo H., Li Z., Yi G., Zu X., Wang H., Wang Y., Huang H., Hu J., Liang Z., and Zhong B. Mater. Letters, 2014, 134, 172 LINK [Google Scholar]
  67. Akter T., and Kim W. S. ACS Appl. Mater. Interfaces, 2012, 4, (4), 1855 LINK [Google Scholar]
  68. Sun Y.-C., Chu M., Huang M., Hegazi O., and Naguib H. E. Macromol. Mater. Eng., 2019, 304, (10), 1900196 LINK [Google Scholar]
  69. Guo Y., Lv Z., Huo Y., Sun L., Chen S., Liu Z., He C., Bi X., Fan X., and You Z. J. Mater. Chem. B, 2019, 7, (1), 123 LINK [Google Scholar]
  70. Garces I. T., Aslanzadeh S., Boluk Y., and Ayranci C. Materials, 2019, 12, (2), 244 LINK [Google Scholar]
  71. Fan K., Huang W. M., Wang C. C., Ding Z., Zhao Y., Purnawali H., Liew K.C., and Zheng L. X. eXPRESS Polym. Lett., 2011, 5, (5), 409 LINK [Google Scholar]
  72. Sun L., Wang T. X., Chen H. M., Salvekar A. V., Naveen B. S., Xu Q., Weng Y., Guo X., Chen Y., and Huang W. M. Polymers, 2019, 11, (6), 1049 LINK [Google Scholar]
  73. Ma M., Guo L., Anderson D. G., and Langer R. cience, 2013, 339, (6116), 186 LINK [Google Scholar]
  74. Shibayama M., Sato M., Kimura Y., Fujiwara H., and Nomura S. Polymer, 1988, 29, (2), 336 LINK [Google Scholar]
  75. Smela E. Adv. Mater., 2003, 15, (6), 481 LINK [Google Scholar]
  76. Baughman R. H. Science, 2005, 308, (5718), 63 LINK [Google Scholar]
  77. Song Q., Chen H., Zhou S., Zhao K., Wang B., and Hu P. Polym. Chem., 2016, 7, (9), 1739 LINK [Google Scholar]
  78. Xiao H., Ma C., Le X., Wang L., Lu W., Theato P., Hu T., Zhang J., and Chen T. Polymers, 2017, 9, (4), 138 LINK [Google Scholar]
  79. Han X.-J., Dong Z.-Q., Fan M.-M., Liu Y., Li J.-H., Wang Y.-F., Yuan Q.-J., Li B.-J., and Zhang S. Macromol. Rapid Commun., 2012, 33, (12), 1055 LINK [Google Scholar]
  80. Li J., Duan Q., Zhang E., and Wang J. Adv. Mater. Sci. Eng., 2018, 7453698 LINK [Google Scholar]
  81. Li Y., Chen H., Liu D., Wang W., Liu Y., and Zhou S. ACS Appl. Mater. Interfaces, 2015, 7, (23), 12988 LINK [Google Scholar]
  82. Wu T., Su Y., and Chen B. ChemPhysChem, 2014, 15, (13), 2794 LINK [Google Scholar]
  83. Chen H., Li Y., Liu Y., Gong T., Wang L., and Zhou S. Polym. Chem., 2014, 5, (17), 5168 LINK [Google Scholar]
  84. Kan K. H. M., Li J., Wijesekera K., and Cranston E. D. Biomacromolecules, 2013, 14, (9), 3130 LINK [Google Scholar]
  85. Way A. E., Hsu L., Shanmuganathan K., Weder C., and Rowan S. J. ACS Macro. Lett., 2012, 1, (8), 1001 LINK [Google Scholar]
  86. Gabdullin N., and Khan S. H. ‘Review of Properties of Magnetic Shape Memory (MSM) Alloys and MSM Actuator Designs’, 2014 Joint IMEKO TC1-TC7-TC13 Symposium: Measurement Science Behind Safety and Security, Madeira, Portugal, 3rd–5th September, 2014, Journal of Physics: Conference Series, Vol. 588, IOP Publishing Ltd, Bristol, UK, 2015, 6 pp LINK [Google Scholar]
  87. Faran E., and Shilo D. Exp. Tech., 2016, 40, (3) 1005 LINK [Google Scholar]
  88. Karger-Kocsis J., and Kéki S. Polymers, 2018, 10, (1), 34 LINK [Google Scholar]
  89. Buckley P. R., McKinley G. H., Wilson T. S., Small W., Benett W. J., Bearinger J. P., McElfresh M. W., and Maitland D. J. IEEE Trans. Biomed. Eng., 2006, 53, (10), 2075 LINK [Google Scholar]
  90. Goldman A. “Modern Ferrite Technology”,Springer Verlag, New York, USA, 2006 LINK [Google Scholar]
  91. Stauffer P. R., Cetas T. C, Fletcher A. M., Deyoung D. W., Dewhirst M. W., Oleson J. R., and Roemer R. B. IEEE Trans. Biomed. Eng., 1984, BME-31, (1), 76 LINK [Google Scholar]
  92. Jordan A., Scholz R., Wust P., Fähling H., and Felix R. J. Magn. Magn. Mater., 1999, 201, (1–3), 413 LINK [Google Scholar]
  93. Fu X., Yuan Y., Liu Z., Yan P., Zhou C., and Lei J. Eur. Polym. J., 2017, 93, 307 LINK [Google Scholar]
  94. Kushner A. M., Vossler J. D., Williams G. A., and Guan Z. J. Am. Chem. Soc., 2009, 131, (25), 8766 LINK [Google Scholar]
  95. Li A., Fan J., and Li G. J. Mater. Chem. A, 2018, 6, (24), 11479 LINK [Google Scholar]
  96. Xie F., Huang L., Leng J., and Liu Y. J. Intell. Mater. Syst. Struct., 2016, 27, (18), 2433 LINK [Google Scholar]
  97. Kelch S., Steuer S., Schmidt A. M., and Lendlein A. Biomacromolecules, 2007, 8, (3), 1018 LINK [Google Scholar]
  98. Leng J., Lu H., Liu Y., Huang W. M., and Du S. MRS Bull., 2009, 34, (11), 848 LINK [Google Scholar]
  99. Kim B. K., Lee S. Y., and Xu M. Polymer, 1996, 37, (26), 5781 LINK [Google Scholar]
  100. Rimdusit S., Lohwerathama M., Hemvichian K., Kasemsiri P., and Dueramae I. Smart Mater. Struct., 2013, 22, (7), 075033 LINK [Google Scholar]
  101. Luo H., Wang H., Zhou H., Zhou X., Hu J., Yi G., Hao Z., and Lin W. Appl. Sci., 2018, 8, (3), 392 LINK [Google Scholar]
  102. Zhang J., Huo M., Li M., Li T., Li N., Zhou J., and Jiang J. Polymer, 2018, 134, 35 LINK [Google Scholar]
  103. Ji G., Zhang P., Nji J., John M., Li G., and Meng H. ‘11 - Shape Memory Polymer-Based Self-Healing Composites’, in “Recent Advances in Smart Self-healing Polymers and Composites”, eds. Li G., Woodhead Publishing Series in Composites Science and Engineering, ch. 11, Woodhead Publishing, Cambridge, UK, 2015, pp. 293–363 LINK [Google Scholar]
  104. Menon A. V., Madras G., and Bose S. Polym. Chem., 2019, 10, (32), 4370 LINK [Google Scholar]
  105. Lendlein A., Behl M., Hiebl B., and Wischke C. Expert Rev. Med. Devices, 2010, 7, (3), 357 LINK [Google Scholar]
  106. Gaj M. P., Wei A., Fuentes-Hernandez C., Zhang Y., Reit R., Voit W., Marder S. R., and Kippelen B. Org. Electron., 2015, 25, 151 LINK [Google Scholar]
  107. Park S. J., and Park C. H. Sci. Rep., 2019, 9, 9157 LINK [Google Scholar]
  108. Thakur S., and Thakur S. ‘Shape Memory Polymers for Smart Textile Applications’, in “Textiles for Advanced Applications”, eds. Kumar B., Intech, Rijeka, Croatia, 2017, 432 pp LINK [Google Scholar]
  109. Li L., Shi P., Hua Li, An J., Gong Y., Chen R., Yu C., Hua W., Xiu F., Zhou J., Gao G., Jin Z., Sun G., and Huang W. Nanoscale, 2018, 10, (1), 118 LINK [Google Scholar]
  110. Huang Y., Zhu M., Pei Z., Xue Q., Huang Y., and Zhi C. J. Mater. Chem. A, 2016, 4, (4), 1290 LINK [Google Scholar]
  111. Ahn S., Deshmukh P., and Kasi R. M. Macromolecules, 2010, 43, (17), 7330 LINK [Google Scholar]
  112. Leng J., Zhang D., Liu Y., Yu K., and Lan X. Appl. Phys. Lett., 2010, 96, 111905 LINK [Google Scholar]
  113. Li W., Liu Y., and Leng J. J. Mater. Chem. A, 2015, 3, (48), 24532 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error