Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

On-road tailpipe volatile organic compounds (VOCs) were sampled from light-duty diesel trucks (LDDTs) compliant with Euro III to V, and a total of 102 VOC species were quantified. The composition characteristics and carbon number distributions were investigated, and the contribution of individual VOC to ozone formation potentials (OFPs) was weighted. Results showed that alkanes were the major VOC species, accounting for approximately 65.5%. VOC emissions decreased significantly as the standards became stricter, especially for alkanes and aromatics; and the VOC emissions on highway were much lower than those on urban roads. Carbon number distribution of VOCs was mainly concentrated in C3–C4 and C10–C12. Aromatics were the major contributors to ozone formation, taking up 49.3–57.6% of the total OFPs, and naphthalene, 1-butene, dodecane, 1,2,3-trimethylbenzene and 2-propenal were the top five species. The information provided insight into the tailpipe VOC emission characteristics and may help decision makers drafting related emission policies.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15900542621515
2021-01-01
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Zhu_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15900542621515&mimeType=html&fmt=ahah

References

  1. R. Zhu, J. Hu, X. Bao, L. He, Y. Lai, L. Zu, Y. Li, S. Su, Transp. Res. Part D: Transp. Environ., 2017, 50, 305 LINK https://doi.org/10.1016/j.trd.2016.10.027 [Google Scholar]
  2. S. Chen, X. Zheng, H. Yin, Y. Liu, Transp. Res. Part D: Transp. Environ., 2020, 79, 102208 LINK https://doi.org/10.1016/j.trd.2019.102208 [Google Scholar]
  3. R. G. Derwent, M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells, N. R. Passant, Sci. Total Environ., 2010, 408, (16), 3374 LINK https://doi.org/10.1016/j.scitotenv.2010.04.013 [Google Scholar]
  4. P. J. Ziemann, R. Atkinson, Chem. Soc. Rev., 2012, 41, (19), 6582 LINK https://doi.org/10.1039/c2cs35122f [Google Scholar]
  5. R. Suarez-Bertoa, A. A. Zardini, S. M. Platt, S. Hellebust, S. M. Pieber, I. El Haddad, B. Temime-Roussel, U. Baltensperger, N. Marchand, A. S. H. Prévôt, C. Astorga, Atmos. Environ., 2015, 117, 200 LINK https://doi.org/10.1016/j.atmosenv.2015.07.006 [Google Scholar]
  6. K. Zhang, S. Batterman, Sci. Total Environ., 2013, 450–451, 307 LINK https://doi.org/10.1016/j.scitotenv.2013.01.074 [Google Scholar]
  7. X. Hao, X. Zhang, X. Cao, X. Shen, J. Shi, Z. Yao, Sci. Total Environ., 2018, 645, 347 LINK https://doi.org/10.1016/j.scitotenv.2018.07.113 [Google Scholar]
  8. F. Golkhorshidi, A. Sorooshian, A. J. Jafari, A. N. Baghani, M. Kermani, R. R. Kalantary, Q. Ashournejad, M. Delikhoon, Atmos. Pollut. Res., 2019, 10, (3), 921 LINK https://doi.org/10.1016/j.apr.2018.12.020 [Google Scholar]
  9. H. Huo, Z. Yao, Y. Zhang, X. Shen, Q. Zhang, Y. Ding, K. He, Atmos. Environ., 2012, 49, 371 LINK https://doi.org/10.1016/j.atmosenv.2011.11.005 [Google Scholar]
  10. Q. Zhang, L. Wu, X. Fang, M. Liu, J. Zhang, M. Shao, S. Lu, H. Mao, Sci. Total Environ., 2018, 624, 878 LINK https://doi.org/10.1016/j.scitotenv.2017.12.171 [Google Scholar]
  11. J. Wang, L. Jin, J. Gao, J. Shi, Y. Zhao, S. Liu, T. Jin, Z. Bai, C.-Y. Wu, Sci. Total Environ., 2013, 445–446, 110 LINK https://doi.org/10.1016/j.scitotenv.2012.12.044 [Google Scholar]
  12. L. Li, Y. Ge, M. Wang, Z. Peng, Y. Song, L. Zhang, W. Yuan, Sci. Total Environ., 2015, 502, 627 LINK https://doi.org/10.1016/j.scitotenv.2014.09.068 [Google Scholar]
  13. X. Cao, Z. Yao, X. Shen, Y. Ye, X. Jiang, Atmos. Environ., 2016, 124, (Part B), 146 LINK https://doi.org/10.1016/j.atmosenv.2015.06.019 [Google Scholar]
  14. G. Wang, S. Cheng, J. Lang, S. Li, L. Tian, J. Environ. Sci., 2016, 46, 28 LINK https://doi.org/10.1016/j.jes.2015.09.021 [Google Scholar]
  15. K. Na, J. Environ. Manage., 2006, 81, (4), 392 LINK https://doi.org/10.1016/j.jenvman.2005.11.004 [Google Scholar]
  16. C.-S. Lim, J.-H. Lim, J.-S. Cha, J.-Y. Lim, J. Environ. Manage., 2019, 239, 103 LINK https://doi.org/10.1016/j.jenvman.2019.03.039 [Google Scholar]
  17. H. Liu, K. He, J. M. Lents, Q. Wang, S. Tolvett, Environ. Sci. Technol., 2009, 43, (24), 9507 LINK https://doi.org/10.1021/es902044x [Google Scholar]
  18. C. Huang, D. Lou, Z. Hu, Q. Feng, Y. Chen, C. Chen, P. Tan, D. Yao, Atmos. Environ., 2013, 77, 703 LINK https://doi.org/10.1016/j.atmosenv.2013.05.059 [Google Scholar]
  19. T. Grigoratos, G. Fontaras, B. Giechaskiel, N. Zacharof, Atmos. Environ., 2019, 201, 348 LINK https://doi.org/10.1016/j.atmosenv.2018.12.042 [Google Scholar]
  20. Z. Yao, X. Shen, Y. Ye, X. Cao, X. Jiang, Y. Zhang, K. He, Atmos. Environ., 2015, 103, 87 LINK https://doi.org/10.1016/j.atmosenv.2014.12.028 [Google Scholar]
  21. “China Mobile Source Environmental Management Annual Report”,Ministry of Ecology and Environment of People’s Republic of China, Beijing, China, 2019 (in Chinese) [Google Scholar]
  22. “Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)”,US EPA, Washington, USA, 1999 LINK https://www.epa.gov/sites/production/files/2019-11/documents/to-15r.pdf [Google Scholar]
  23. M. Wang, S. Li, R. Zhu, R. Zhang, L. Zu, Y. Wang, X. Bao, Atmos. Environ., 2020, 223, 117294 LINK https://doi.org/10.1016/j.atmosenv.2020.117294 [Google Scholar]
  24. J. Sun, Z. Shen, Y. Zhang, Z. Zhang, Q. Zhang, T. Zhang, X. Niu, Y. Huang, L. Cui, H. Xu, H. Liu, J. Cao, X. Li, Environ. Sci. Pollut. Res., 2019, 26, (27), 27769 LINK https://doi.org/10.1007/s11356-019-05950-0 [Google Scholar]
  25. W. P. L. Carter, Air Waste, 1994, 44, (7), 881 LINK https://doi.org/10.1080/1073161x.1994.10467290 [Google Scholar]
  26. P. K. K. Louie, J. W. K. Ho, R. C. W. Tsang, D. R. Blake, A. K. H. Lau, J. Z. Yu, Z. Yuan, X. Wang, M. Shao, L. Zhong, Atmos. Environ., 2013, 76, 125 LINK https://doi.org/10.1016/j.atmosenv.2012.08.058 [Google Scholar]
  27. B. Li, S. S. H. Ho, Y. Xue, Y. Huang, L. Wang, Y. Cheng, W. Dai, H. Zhong, J. Cao, S. Lee, Atmos. Environ., 2017, 161, 1 LINK https://doi.org/10.1016/j.atmosenv.2017.04.029 [Google Scholar]
  28. W. P. L. Carter, “Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales”, Contracts No. 03-318, 06-408, and 07-730, California Air Resources Board, Sacramento, USA, 27th January, 2010, 396 pp LINK https://intra.engr.ucr.edu/~carter/SAPRC/saprc07.pdf [Google Scholar]
  29. Q. Zhang, J. Fan, W. Yang, B. Chen, L. Zhang, J. Liu, J. Wang, C. Zhou, X. Chen, J. Air Waste Manage. Assoc., 2017, 67, (7), 814 LINK https://doi.org/10.1080/10962247.2017.1301275 [Google Scholar]
  30. Z. H. Zhang, C. S. Cheung, T. L. Chan, C. D. Yao, Sci. Total Environ., 2010, 408, (4), 865 LINK https://doi.org/10.1016/j.scitotenv.2009.10.060 [Google Scholar]
  31. L. Zhu, C. S. Cheung, W. G. Zhang, J. H. Fang, Z. Huang, Fuel, 2013, 113, 690 LINK https://doi.org/10.1016/j.fuel.2013.06.028 [Google Scholar]
  32. Y. S. Tadano, G. C. Borillo, A. F. L. Godoi, A. Cichon, T. O. B. Silva, F. B. Valebona, M. R. Errera, R. A. Penteado Neto, D. Rempel, L. Martin, C. I. Yamamoto, R. H. M. Godoi, Sci. Total Environ., 2014, 500–501, 64 LINK https://doi.org/10.1016/j.scitotenv.2014.08.100 [Google Scholar]
  33. A. Choudhary, S. Gokhale, Transp. Res. Part D: Transp. Environ., 2016, 43, 59 LINK https://doi.org/10.1016/j.trd.2015.12.006 [Google Scholar]
  34. S. Mahesh, G. Ramadurai, S. M. Shiva Nagendra, Sustain. Cities Soc., 2018, 41, 104 LINK https://doi.org/10.1016/j.scs.2018.05.025 [Google Scholar]
  35. S. Jung, S. Mun, T. Chung, S. Kim, S. Seo, I. Kim, H. Hong, H. Chong, K. Sung, J. Kim, Y. Hong, Aerosol Air Qual. Res., 2019, 19, (2), 431 LINK https://doi.org/10.4209/aaqr.2018.05.0195 [Google Scholar]
  36. I. J. George, M. D. Hays, R. Snow, J. Faircloth, B. J. George, T. Long, R. W. Baldauf, Environ. Sci. Technol., 2014, 48, (24), 14782 LINK https://doi.org/10.1021/es502949a [Google Scholar]
  37. J.-H. Tsai, S.-Y. Chang, H.-L. Chiang, Atmos. Environ., 2012, 61, 499 LINK https://doi.org/10.1016/j.atmosenv.2012.07.078 [Google Scholar]
  38. I. Caplain, F. Cazier, H. Nouali, A. Mercier, J.-C. Déchaux, V. Nollet, R. Joumard, J.-M. André, R. Vidon, Atmos. Environ., 2006, 40, (31), 5954 LINK https://doi.org/10.1016/j.atmosenv.2005.12.049 [Google Scholar]
  39. Q. Lu, Y. Zhao, A. L. Robinson, Atmos. Chem. Phys., 2018, 18, (23), 17637 LINK https://doi.org/10.5194/acp-18-17637-2018 [Google Scholar]
  40. H. Wang, S. Jing, S. Lou, Q. Hu, L. Li, S. Tao, C. Huang, L. Qiao, C. Chen, Sci. Total Environ., 2017, 607–608, 253 LINK https://doi.org/10.1016/j.scitotenv.2017.07.001 [Google Scholar]
  41. T. D. Durbin, X. Zhu, J. M. Norbeck, Atmos. Environ., 2003, 37, (15), 2105 LINK https://doi.org/10.1016/s1352-2310(03)00088-8 [Google Scholar]
  42. V. Bermúdez, J. M. Lujan, B. Pla, W. G. Linares, Biomass Bioenergy, 2011, 35, (2), 789 LINK https://doi.org/10.1016/j.biombioe.2010.10.034 [Google Scholar]
/content/journals/10.1595/205651320X15900542621515
Loading
/content/journals/10.1595/205651320X15900542621515
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test