Skip to content
Volume 65, Issue 3
  • ISSN: 2056-5135


On-road tailpipe volatile organic compounds (VOCs) were sampled from light-duty diesel trucks (LDDTs) compliant with Euro III to V, and a total of 102 VOC species were quantified. The composition characteristics and carbon number distributions were investigated, and the contribution of individual VOC to ozone formation potentials (OFPs) was weighted. Results showed that alkanes were the major VOC species, accounting for approximately 65.5%. VOC emissions decreased significantly as the standards became stricter, especially for alkanes and aromatics; and the VOC emissions on highway were much lower than those on urban roads. Carbon number distribution of VOCs was mainly concentrated in C3–C4 and C10–C12. Aromatics were the major contributors to ozone formation, taking up 49.3–57.6% of the total OFPs, and naphthalene, 1-butene, dodecane, 1,2,3-trimethylbenzene and 2-propenal were the top five species. The information provided insight into the tailpipe VOC emission characteristics and may help decision makers drafting related emission policies.


Article metrics loading...

Loading full text...

Full text loading...



  1. Zhu R., Hu J., Bao X., He L., Lai Y., Zu L., Li Y., and Su S. Transp. Res. Part D: Transp. Environ., 2017, 50, 305 LINK [Google Scholar]
  2. Chen S., Zheng X., Yin H., and Liu Y. Transp. Res. Part D: Transp. Environ., 2020, 79, 102208 LINK [Google Scholar]
  3. Derwent R. G., Jenkin M. E., Utembe S. R., Shallcross D. E., Murrells T. P., and Passant N. R. Sci. Total Environ., 2010, 408, (16), 3374 LINK [Google Scholar]
  4. Ziemann P. J., and Atkinson R. Chem. Soc. Rev., 2012, 41, (19), 6582 LINK [Google Scholar]
  5. Suarez-Bertoa R., Zardini A. A., Platt S. M., Hellebust S., Pieber S. M., El Haddad I., Temime-Roussel B., Baltensperger U., Marchand N., Prévôt A. S. H., and Astorga C. Atmos. Environ., 2015, 117, 200 LINK [Google Scholar]
  6. Zhang K., and Batterman S. Sci. Total Environ., 2013, 450–451, 307 LINK [Google Scholar]
  7. Hao X., Zhang X., Cao X., Shen X., Shi J., and Yao Z. Sci. Total Environ., 2018, 645, 347 LINK [Google Scholar]
  8. Golkhorshidi F., Sorooshian A., Jafari A. J., Baghani A. N., Kermani M., Kalantary R. R., Ashournejad Q., and Delikhoon M. Atmos. Pollut. Res., 2019, 10, (3), 921 LINK [Google Scholar]
  9. Huo H., Yao Z., Zhang Y., Shen X., Zhang Q., Ding Y., and He K. Atmos. Environ., 2012, 49, 371 LINK [Google Scholar]
  10. Zhang Q., Wu L., Fang X., Liu M., Zhang J., Shao M., Lu S., and Mao H. Sci. Total Environ., 2018, 624, 878 LINK [Google Scholar]
  11. Wang J., Jin L., Gao J., Shi J., Zhao Y., Liu S., Jin T., Bai Z., and Wu C.-Y. Sci. Total Environ., 2013, 445–446, 110 LINK [Google Scholar]
  12. Li L., Ge Y., Wang M., Peng Z., Song Y., Zhang L., and Yuan W. Sci. Total Environ., 2015, 502, 627 LINK [Google Scholar]
  13. Cao X., Yao Z., Shen X., Ye Y., and Jiang X. Atmos. Environ., 2016, 124, (Part B), 146 LINK [Google Scholar]
  14. Wang G., Cheng S., Lang J., Li S., and Tian L. J. Environ. Sci., 2016, 46, 28 LINK [Google Scholar]
  15. Na K. J. Environ. Manage., 2006, 81, (4), 392 LINK [Google Scholar]
  16. Lim C.-S., Lim J.-H., Cha J.-S., and Lim J.-Y. J. Environ. Manage., 2019, 239, 103 LINK [Google Scholar]
  17. Liu H., He K., Lents J. M., Wang Q., and Tolvett S. Environ. Sci. Technol., 2009, 43, (24), 9507 LINK [Google Scholar]
  18. Huang C., Lou D., Hu Z., Feng Q., Chen Y., Chen C., Tan P., and Yao D. Atmos. Environ., 2013, 77, 703 LINK [Google Scholar]
  19. Grigoratos T., Fontaras G., Giechaskiel B., and Zacharof N. Atmos. Environ., 2019, 201, 348 LINK [Google Scholar]
  20. Yao Z., Shen X., Ye Y., Cao X., Jiang X., Zhang Y., and He K. Atmos. Environ., 2015, 103, 87 LINK [Google Scholar]
  21. “China Mobile Source Environmental Management Annual Report”,Ministry of Ecology and Environment of People’s Republic of China, Beijing, China, 2019 (in Chinese) [Google Scholar]
  22. “Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)”,US EPA, Washington, USA, 1999 LINK [Google Scholar]
  23. Wang M., Li S., Zhu R., Zhang R., Zu L., Wang Y., and Bao X. Atmos. Environ., 2020, 223, 117294 LINK [Google Scholar]
  24. Sun J., Shen Z., Zhang Y., Zhang Z., Zhang Q., Zhang T., Niu X., Huang Y., Cui L., Xu H., Liu H., Cao J., and Li X. Environ. Sci. Pollut. Res., 2019, 26, (27), 27769 LINK [Google Scholar]
  25. Carter W. P. L. Air Waste, 1994, 44, (7), 881 LINK [Google Scholar]
  26. Louie P. K. K., Ho J. W. K., Tsang R. C. W., Blake D. R., Lau A. K. H., Yu J. Z., Yuan Z., Wang X., Shao M., and Zhong L. Atmos. Environ., 2013, 76, 125 LINK [Google Scholar]
  27. Li B., Ho S. S. H., Xue Y., Huang Y., Wang L., Cheng Y., Dai W., Zhong H., Cao J., and Lee S. Atmos. Environ., 2017, 161, 1 LINK [Google Scholar]
  28. Carter W. P. L. “Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales”, Contracts No. 03-318, 06-408, and 07-730, California Air Resources Board, Sacramento, USA, 27th January, 2010, 396 pp LINK [Google Scholar]
  29. Zhang Q., Fan J., Yang W., Chen B., Zhang L., Liu J., Wang J., Zhou C., and Chen X. J. Air Waste Manage. Assoc., 2017, 67, (7), 814 LINK [Google Scholar]
  30. Zhang Z. H., Cheung C. S., Chan T. L., and Yao C. D. Sci. Total Environ., 2010, 408, (4), 865 LINK [Google Scholar]
  31. Zhu L., Cheung C. S., Zhang W. G., Fang J. H., and Huang Z. Fuel, 2013, 113, 690 LINK [Google Scholar]
  32. Tadano Y. S., Borillo G. C., Godoi A. F. L., Cichon A., Silva T. O. B., Valebona F. B., Errera M. R., Penteado Neto R. A., Rempel D., Martin L., Yamamoto C. I., and Godoi R. H. M. Sci. Total Environ., 2014, 500–501, 64 LINK [Google Scholar]
  33. Choudhary A., and Gokhale S. Transp. Res. Part D: Transp. Environ., 2016, 43, 59 LINK [Google Scholar]
  34. Mahesh S., Ramadurai G., and Shiva Nagendra S. M. Sustain. Cities Soc., 2018, 41, 104 LINK [Google Scholar]
  35. Jung S., Mun S., Chung T., Kim S., Seo S., Kim I., Hong H., Chong H., Sung K., Kim J., and Hong Y. Aerosol Air Qual. Res., 2019, 19, (2), 431 LINK [Google Scholar]
  36. George I. J., Hays M. D., Snow R., Faircloth J., George B. J., Long T., and Baldauf R. W. Environ. Sci. Technol., 2014, 48, (24), 14782 LINK [Google Scholar]
  37. Tsai J.-H., Chang S.-Y., and Chiang H.-L. Atmos. Environ., 2012, 61, 499 LINK [Google Scholar]
  38. Caplain I., Cazier F., Nouali H., Mercier A., Déchaux J.-C., Nollet V., Joumard R., André J.-M., and Vidon R. Atmos. Environ., 2006, 40, (31), 5954 LINK [Google Scholar]
  39. Lu Q., Zhao Y., and Robinson A. L. Atmos. Chem. Phys., 2018, 18, (23), 17637 LINK [Google Scholar]
  40. Wang H., Jing S., Lou S., Hu Q., Li L., Tao S., Huang C., Qiao L., and Chen C. Sci. Total Environ., 2017, 607–608, 253 LINK [Google Scholar]
  41. Durbin T. D., Zhu X., and Norbeck J. M. Atmos. Environ., 2003, 37, (15), 2105 LINK [Google Scholar]
  42. Bermúdez V., Lujan J. M., Pla B., and Linares W. G. Biomass Bioenergy, 2011, 35, (2), 789 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error