Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

In the present investigation, TiO nanostructures were synthesised a simple sol-gel technique and characterised with X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), high-resolution transmission electron microscopy (HR-TEM) and ultraviolet-visible (UV-vis) spectroscopy. The temperature and concentration dependence of thermal conductivity enhancement (TCE) and ultrasonic velocity have been explored in ethylene glycol-based TiO nanofluids. The obtained results showed 24% enhancement in thermal conductivity at higher temperature (80°C) of the base fluid ethylene glycol by adding 1.0 wt% of TiO nanoparticles. The behaviour of TCE and ultrasonic velocity with temperature in prepared nanofluids has been explained with the help of existing phenomena. The increase in ultrasonic velocity in ethylene glycol with TiO nanoparticles shows that a strong cohesive interaction force arises among the nanoparticles and base fluid. These results divulge that TiO nanoparticles can be considered for applications in next-generation heat transfer in nanofluids.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15940360546454
2021-01-01
2024-02-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Singh_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15940360546454&mimeType=html&fmt=ahah

References

  1. Jeevanandam J., Barhoum A., Chan Y. S., Dufresne A., and Danquah M. K. Beilstein J. Nanotechnol., 2018, 9, 1050 LINK https://doi.org/10.3762/bjnano.9.98 [Google Scholar]
  2. Sastry N. N. V., Bhunia A., Sundarajan T., and Das S. K. Nanotechnology, 2008, 19, (5), 055704 LINK https://doi.org/10.1088/0957-4484/19/05/055704 [Google Scholar]
  3. Khuwaileh B. A., Al-Hamadi F. I., Hartanto D., Said Z., and Ali M. Ann. Nucl. Energy, 2020, 144, 107508 LINK https://doi.org/10.1016/j.anucene.2020.107508 [Google Scholar]
  4. Zhang Z., Lu M., Xu H., and Chin W.-S. Chem. Eur. J., 2007, 13, (2), 632 LINK https://doi.org/10.1002/chem.200600293 [Google Scholar]
  5. Shah K., and Upadhyay R. V. Pramana J. Phys., 2011, 77, (2), 345 LINK https://doi.org/10.1007/s12043-011-0142-z [Google Scholar]
  6. Guo L., Liang Ji Y., Xu H., Simon P., and Wu Z. J. Am. Chem. Soc., 2002, 124, (5), 14864 LINK https://doi.org/10.1021/ja027947g [Google Scholar]
  7. Seow Z. L. S., Wong A. S. W., Thavasi V., Jose R., Ramakrishna S., and Ho G. W. Nanotechnology, 2009, 20, (4), 045604 LINK https://doi.org/10.1088/0957-4484/20/4/045604 [Google Scholar]
  8. Komban R., Koempe K., and Haase M. Cryst. Growth Des., 2011, 11, (4), 1033 LINK https://doi.org/10.1021/cg1010314 [Google Scholar]
  9. Burda C., Link S., Mohamed M. B., and El-Sayed M. J. Chem. Phys., 2002, 116, (9), 3828 LINK https://doi.org/10.1063/1.1446851 [Google Scholar]
  10. Benelmekki M. ‘An Introduction to Nanoparticles and Nanotechnology’, in “Designing Hybrid Nanoparticles”,Morgan & Claypool Publishers, San Rafael, USA, 2015, 12 pp [Google Scholar]
  11. Wang J. J., Zheng R. T., Gao J. W., and Chen G. Nano Today, 2012, 7, (2), 124 LINK https://doi.org/10.1016/j.nantod.2012.02.007 [Google Scholar]
  12. Ganvir R. B., Walke P. V., and Kriplani V. M. Renew. Sust. Energ. Rev., 2017, 75, 451 LINK https://doi.org/10.1016/j.rser.2016.11.010 [Google Scholar]
  13. Murshed S. M. S., Leong K. C., and Yang C. Int. J. Therm. Sci., 2008, 47, (5), 560 LINK https://doi.org/10.1016/j.ijthermalsci.2007.05.004 [Google Scholar]
  14. Duangthongsuk W., and Wongwises S. Exp. Therm. Fluid. Sci., 2009, 33, (4), 706 LINK https://doi.org/10.1016/j.expthermflusci.2009.01.005 [Google Scholar]
  15. Alashkar A., and Gadalla M. Appl. Energy, 2017, 191, 469 LINK https://doi.org/10.1016/j.apenergy.2017.01.084 [Google Scholar]
  16. Hussien A. A., Abdullah M. Z., Yusop N. M., Al-Nimr M. A., Atieh M. A., and Mehrali M. Int. J. Heat Mass Transf., 2017, 115, (Part B), 1121 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.120 [Google Scholar]
  17. Ghasemi S. E. J. Mol. Liq., 2017, 238, 115 LINK https://doi.org/10.1016/j.molliq.2017.04.067 [Google Scholar]
  18. Said Z., Allagui A., Abdelkareem M. A., Alawadhi H., and Elsaid K. J. Colloid Interface Sci., 2018, 520, 50 LINK https://doi.org/10.1016/j.jcis.2018.02.042 [Google Scholar]
  19. Gupta M., Singh V., and Said Z. Sustain. Energy Technol. Assess., 2020, 39, 100720 LINK https://doi.org/10.1016/j.seta.2020.100720 [Google Scholar]
  20. Okeke G., Witharana S., Antony S. J., and Ding Y. J. Nanopart. Res., 2011, 13, (12), 6365 LINK https://doi.org/10.1007/s11051-011-0389-9 [Google Scholar]
  21. Yu W., and Choi S. U. S. J. Nanopart. Res., 2004, 6, (4), 355 LINK https://doi.org/10.1007/s11051-004-2601-7 [Google Scholar]
  22. Das P. K., Mallik A. K., Ganguly R., and Santra A. K. Int. Commun. Heat Mass, 2016, 75, 341 LINK https://doi.org/10.1016/j.icheatmasstransfer.2016.05.011 [Google Scholar]
  23. Kaler V., Duchaniya R. K., and Pandel U. AIP Conf. Proc., 1724, (1), 020127 LINK https://doi.org/10.1063/1.4945247 [Google Scholar]
  24. Yang L., and Hu Y. Nanoscale Res. Lett., 2017, 12, 417 LINK https://doi.org/10.1186/s11671-017-2184-8 [Google Scholar]
  25. Trisaksri V., and Wongwises S. Int. J. Heat Mass Trans., 2009, 52, (5–6), 1582 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041 [Google Scholar]
  26. Said Z., Gupta M., Hegab H., Arora N., Khan A. M., Jamil M., and Bellos E. Int. J. Adv. Manuf. Technol., 2019, 105, (5–6), 2057 LINK https://doi.org/10.1007/s00170-019-04382-x [Google Scholar]
  27. Sonawane S. S., Khedkar R. S., and Wasewar K. L. J. Exp. Nanosci., 2015, 10, (4), 310 LINK https://doi.org/10.1080/17458080.2013.832421 [Google Scholar]
  28. Said Z., Abdelkareem M. A., Rezk H., and Nassef A. M. Powder Technol., 2019, 353, 345 LINK https://doi.org/10.1016/j.powtec.2019.05.036 [Google Scholar]
  29. Said Z., Abdelkareem M. A., Rezk H., Nassef A. M., and Atwany H. Z. Powder Technol., 2020, 364, 795 LINK https://doi.org/10.1016/j.powtec.2020.02.026 [Google Scholar]
  30. Beck M. P., Yuan Y., Warrier P., and Teja A. S. J. Nanoparticle Res., 2009, 11, (5), 1129 LINK https://doi.org/10.1007/s11051-008-9500-2 [Google Scholar]
  31. Das S. K., Choi S. U. S., Yu W., and Pradeep T. “Nanofluids: Science and Technology”,John Wiley & Sons Inc, Hoboken, USA, 2007, 397 pp LINK https://doi.org/10.1002/9780470180693 [Google Scholar]
  32. Khedkar R. S., Shrivastava N., Sonawane S. S., and Wasewar K. L. Int. Commun. Heat. Mass Transf., 2016, 73, 54 LINK https://doi.org/10.1016/j.icheatmasstransfer.2016.02.004 [Google Scholar]
  33. Angayarkanni S. A., and Philip J. J. Nanofluids, 2014, 3, (1), 17 LINK https://doi.org/10.1166/jon.2014.1083 [Google Scholar]
  34. Khedkar R. S., Sonawane S. S., and Wasewar K. L. Int. Commun. Heat Mass Transf., 2012, 39, (5), 665 LINK https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012 [Google Scholar]
  35. Esfe M. H., Afrand M., Karimipour A., Yan W.-M., and Sina N. Int. Commun. Heat Mass Transf., 2015, 67, 173 LINK https://doi.org/10.1016/j.icheatmasstransfer.2015.07.009 [Google Scholar]
  36. Li H., Wang L., He Y., Hu Y., Zhu J., and Jiang B. Appl. Therm. Eng., 2015, 88, 363 LINK https://doi.org/10.1016/j.applthermaleng.2014.10.071 [Google Scholar]
  37. Agarwal R., Verma K., Agrawal N. K., Duchaniya R. K., and Singh R. Appl. Therm. Eng., 2016, 102, 1024 LINK https://doi.org/10.1016/j.applthermaleng.2016.04.051 [Google Scholar]
  38. Leena M., Srinivasan S., and Prabhaharan M. Nanotechnol. Rev., 2015, 4, (5), 449 LINK https://doi.org/10.1515/ntrev-2015-0016 [Google Scholar]
  39. Kripal R., and Tripathi U. M. J. Mater. Sci.: Mater. Electron., 2018, 29, (14), 12195 LINK https://doi.org/10.1007/s10854-018-9328-1 [Google Scholar]
  40. Chukwuocha E. O., Onyeaju M. C., and Harry T. S. T. World J. Condens. Matter Phys., 2012, 2, (2), 96 LINK https://doi.org/10.4236/wjcmp.2012.22017 [Google Scholar]
  41. Wan M., Yadav R. R., Mishra G., Singh D., and Joshi B. Johnson Matthey Technol. Rev., 2015, 59, (3), 199 LINK https://www.technology.matthey.com/article/59/3/199-206/ [Google Scholar]
  42. Choi S. U. S. ASME Fluids Eng. Div. Summer Conf. Proc., 1995, 231, 99 [Google Scholar]
  43. Xue Q. Z. Phys. Lett. A, 2003, 307, (5–6), 313 LINK https://doi.org/10.1016/S0375-9601(02)01728-0 [Google Scholar]
  44. Prasher R., Battacharya P., and Phelan P. E. Phys. Rev. Lett., 2005, 94, (2), 025901 LINK https://doi.org/10.1103/PhysRevLett.94.025901 [Google Scholar]
  45. Yu W., Xie H., Chen L., and Li Y. Thermochim. Acta, 2009, 491, (1–2), 92 LINK https://doi.org/10.1016/j.tca.2009.03.007 [Google Scholar]
  46. Wan M., Yadav R. R., Yadav K. L., and Yadaw S. B. Exp. Therm. Fluid Sci., 2012, 41, 158 LINK https://doi.org/10.1016/j.expthermflusci.2012.03.030 [Google Scholar]
  47. Raj B., Philip J., Rajkumar K. V., and Kalyanasundaram P. Proc. Indian Nat. Sci. Acad., 2006, 72, (3), 145 [Google Scholar]
  48. Singh D. K., Pandey D. K., Yadav R. R., and Singh D. Pramana J. Phys., 2012, 78, (5), 759 LINK https://doi.org/10.1007/s12043-012-0275-8 [Google Scholar]
  49. Álvarez-Arenas T. E. G., Segura L. E., and de Sarabia E. R. F. Ultrasonics, 2002, 39, (10), 715 LINK https://doi.org/10.1016/S0041-624X(02)00375-X [Google Scholar]
  50. Sokolov V. V. Acoust. Phys., 2010, 56, (6), 972 LINK https://doi.org/10.1134/S1063771010060229 [Google Scholar]
  51. Singh D. K., Pandey D. K., and Yadav R. R. Ultrasonics, 2009, 49, (8), 634 LINK https://doi.org/10.1016/j.ultras.2009.03.005 [Google Scholar]
  52. Eptein P. S., and Carhart R. R. J. Acoust. Soc. Am., 1953, 25, (3), 553 LINK https://doi.org/10.1121/1.1907107 [Google Scholar]
  53. Biwa S., Watanabe Y., Motogi S., and Ohno N. Ultrasonics, 2004, 43, (1), 5 LINK https://doi.org/10.1016/j.ultras.2004.03.002 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15940360546454
Loading
/content/journals/10.1595/205651320X15940360546454
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error