Skip to content
Volume 65, Issue 3
  • ISSN: 2056-5135


In the present investigation, TiO nanostructures were synthesised a simple sol-gel technique and characterised with X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), high-resolution transmission electron microscopy (HR-TEM) and ultraviolet-visible (UV-vis) spectroscopy. The temperature and concentration dependence of thermal conductivity enhancement (TCE) and ultrasonic velocity have been explored in ethylene glycol-based TiO nanofluids. The obtained results showed 24% enhancement in thermal conductivity at higher temperature (80°C) of the base fluid ethylene glycol by adding 1.0 wt% of TiO nanoparticles. The behaviour of TCE and ultrasonic velocity with temperature in prepared nanofluids has been explained with the help of existing phenomena. The increase in ultrasonic velocity in ethylene glycol with TiO nanoparticles shows that a strong cohesive interaction force arises among the nanoparticles and base fluid. These results divulge that TiO nanoparticles can be considered for applications in next-generation heat transfer in nanofluids.


Article metrics loading...

Loading full text...

Full text loading...



  1. Jeevanandam J., Barhoum A., Chan Y. S., Dufresne A., and Danquah M. K. Beilstein J. Nanotechnol., 2018, 9, 1050 LINK [Google Scholar]
  2. Sastry N. N. V., Bhunia A., Sundarajan T., and Das S. K. Nanotechnology, 2008, 19, (5), 055704 LINK [Google Scholar]
  3. Khuwaileh B. A., Al-Hamadi F. I., Hartanto D., Said Z., and Ali M. Ann. Nucl. Energy, 2020, 144, 107508 LINK [Google Scholar]
  4. Zhang Z., Lu M., Xu H., and Chin W.-S. Chem. Eur. J., 2007, 13, (2), 632 LINK [Google Scholar]
  5. Shah K., and Upadhyay R. V. Pramana J. Phys., 2011, 77, (2), 345 LINK [Google Scholar]
  6. Guo L., Liang Ji Y., Xu H., Simon P., and Wu Z. J. Am. Chem. Soc., 2002, 124, (5), 14864 LINK [Google Scholar]
  7. Seow Z. L. S., Wong A. S. W., Thavasi V., Jose R., Ramakrishna S., and Ho G. W. Nanotechnology, 2009, 20, (4), 045604 LINK [Google Scholar]
  8. Komban R., Koempe K., and Haase M. Cryst. Growth Des., 2011, 11, (4), 1033 LINK [Google Scholar]
  9. Burda C., Link S., Mohamed M. B., and El-Sayed M. J. Chem. Phys., 2002, 116, (9), 3828 LINK [Google Scholar]
  10. Benelmekki M. ‘An Introduction to Nanoparticles and Nanotechnology’, in “Designing Hybrid Nanoparticles”,Morgan & Claypool Publishers, San Rafael, USA, 2015, 12 pp [Google Scholar]
  11. Wang J. J., Zheng R. T., Gao J. W., and Chen G. Nano Today, 2012, 7, (2), 124 LINK [Google Scholar]
  12. Ganvir R. B., Walke P. V., and Kriplani V. M. Renew. Sust. Energ. Rev., 2017, 75, 451 LINK [Google Scholar]
  13. Murshed S. M. S., Leong K. C., and Yang C. Int. J. Therm. Sci., 2008, 47, (5), 560 LINK [Google Scholar]
  14. Duangthongsuk W., and Wongwises S. Exp. Therm. Fluid. Sci., 2009, 33, (4), 706 LINK [Google Scholar]
  15. Alashkar A., and Gadalla M. Appl. Energy, 2017, 191, 469 LINK [Google Scholar]
  16. Hussien A. A., Abdullah M. Z., Yusop N. M., Al-Nimr M. A., Atieh M. A., and Mehrali M. Int. J. Heat Mass Transf., 2017, 115, (Part B), 1121 LINK [Google Scholar]
  17. Ghasemi S. E. J. Mol. Liq., 2017, 238, 115 LINK [Google Scholar]
  18. Said Z., Allagui A., Abdelkareem M. A., Alawadhi H., and Elsaid K. J. Colloid Interface Sci., 2018, 520, 50 LINK [Google Scholar]
  19. Gupta M., Singh V., and Said Z. Sustain. Energy Technol. Assess., 2020, 39, 100720 LINK [Google Scholar]
  20. Okeke G., Witharana S., Antony S. J., and Ding Y. J. Nanopart. Res., 2011, 13, (12), 6365 LINK [Google Scholar]
  21. Yu W., and Choi S. U. S. J. Nanopart. Res., 2004, 6, (4), 355 LINK [Google Scholar]
  22. Das P. K., Mallik A. K., Ganguly R., and Santra A. K. Int. Commun. Heat Mass, 2016, 75, 341 LINK [Google Scholar]
  23. Kaler V., Duchaniya R. K., and Pandel U. AIP Conf. Proc., 1724, (1), 020127 LINK [Google Scholar]
  24. Yang L., and Hu Y. Nanoscale Res. Lett., 2017, 12, 417 LINK [Google Scholar]
  25. Trisaksri V., and Wongwises S. Int. J. Heat Mass Trans., 2009, 52, (5–6), 1582 LINK [Google Scholar]
  26. Said Z., Gupta M., Hegab H., Arora N., Khan A. M., Jamil M., and Bellos E. Int. J. Adv. Manuf. Technol., 2019, 105, (5–6), 2057 LINK [Google Scholar]
  27. Sonawane S. S., Khedkar R. S., and Wasewar K. L. J. Exp. Nanosci., 2015, 10, (4), 310 LINK [Google Scholar]
  28. Said Z., Abdelkareem M. A., Rezk H., and Nassef A. M. Powder Technol., 2019, 353, 345 LINK [Google Scholar]
  29. Said Z., Abdelkareem M. A., Rezk H., Nassef A. M., and Atwany H. Z. Powder Technol., 2020, 364, 795 LINK [Google Scholar]
  30. Beck M. P., Yuan Y., Warrier P., and Teja A. S. J. Nanoparticle Res., 2009, 11, (5), 1129 LINK [Google Scholar]
  31. Das S. K., Choi S. U. S., Yu W., and Pradeep T. “Nanofluids: Science and Technology”,John Wiley & Sons Inc, Hoboken, USA, 2007, 397 pp LINK [Google Scholar]
  32. Khedkar R. S., Shrivastava N., Sonawane S. S., and Wasewar K. L. Int. Commun. Heat. Mass Transf., 2016, 73, 54 LINK [Google Scholar]
  33. Angayarkanni S. A., and Philip J. J. Nanofluids, 2014, 3, (1), 17 LINK [Google Scholar]
  34. Khedkar R. S., Sonawane S. S., and Wasewar K. L. Int. Commun. Heat Mass Transf., 2012, 39, (5), 665 LINK [Google Scholar]
  35. Esfe M. H., Afrand M., Karimipour A., Yan W.-M., and Sina N. Int. Commun. Heat Mass Transf., 2015, 67, 173 LINK [Google Scholar]
  36. Li H., Wang L., He Y., Hu Y., Zhu J., and Jiang B. Appl. Therm. Eng., 2015, 88, 363 LINK [Google Scholar]
  37. Agarwal R., Verma K., Agrawal N. K., Duchaniya R. K., and Singh R. Appl. Therm. Eng., 2016, 102, 1024 LINK [Google Scholar]
  38. Leena M., Srinivasan S., and Prabhaharan M. Nanotechnol. Rev., 2015, 4, (5), 449 LINK [Google Scholar]
  39. Kripal R., and Tripathi U. M. J. Mater. Sci.: Mater. Electron., 2018, 29, (14), 12195 LINK [Google Scholar]
  40. Chukwuocha E. O., Onyeaju M. C., and Harry T. S. T. World J. Condens. Matter Phys., 2012, 2, (2), 96 LINK [Google Scholar]
  41. Wan M., Yadav R. R., Mishra G., Singh D., and Joshi B. Johnson Matthey Technol. Rev., 2015, 59, (3), 199 LINK [Google Scholar]
  42. Choi S. U. S. ASME Fluids Eng. Div. Summer Conf. Proc., 1995, 231, 99 [Google Scholar]
  43. Xue Q. Z. Phys. Lett. A, 2003, 307, (5–6), 313 LINK [Google Scholar]
  44. Prasher R., Battacharya P., and Phelan P. E. Phys. Rev. Lett., 2005, 94, (2), 025901 LINK [Google Scholar]
  45. Yu W., Xie H., Chen L., and Li Y. Thermochim. Acta, 2009, 491, (1–2), 92 LINK [Google Scholar]
  46. Wan M., Yadav R. R., Yadav K. L., and Yadaw S. B. Exp. Therm. Fluid Sci., 2012, 41, 158 LINK [Google Scholar]
  47. Raj B., Philip J., Rajkumar K. V., and Kalyanasundaram P. Proc. Indian Nat. Sci. Acad., 2006, 72, (3), 145 [Google Scholar]
  48. Singh D. K., Pandey D. K., Yadav R. R., and Singh D. Pramana J. Phys., 2012, 78, (5), 759 LINK [Google Scholar]
  49. Álvarez-Arenas T. E. G., Segura L. E., and de Sarabia E. R. F. Ultrasonics, 2002, 39, (10), 715 LINK [Google Scholar]
  50. Sokolov V. V. Acoust. Phys., 2010, 56, (6), 972 LINK [Google Scholar]
  51. Singh D. K., Pandey D. K., and Yadav R. R. Ultrasonics, 2009, 49, (8), 634 LINK [Google Scholar]
  52. Eptein P. S., and Carhart R. R. J. Acoust. Soc. Am., 1953, 25, (3), 553 LINK [Google Scholar]
  53. Biwa S., Watanabe Y., Motogi S., and Ohno N. Ultrasonics, 2004, 43, (1), 5 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error