Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

In the present investigation, TiO nanostructures were synthesised a simple sol-gel technique and characterised with X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), high-resolution transmission electron microscopy (HR-TEM) and ultraviolet-visible (UV-vis) spectroscopy. The temperature and concentration dependence of thermal conductivity enhancement (TCE) and ultrasonic velocity have been explored in ethylene glycol-based TiO nanofluids. The obtained results showed 24% enhancement in thermal conductivity at higher temperature (80°C) of the base fluid ethylene glycol by adding 1.0 wt% of TiO nanoparticles. The behaviour of TCE and ultrasonic velocity with temperature in prepared nanofluids has been explained with the help of existing phenomena. The increase in ultrasonic velocity in ethylene glycol with TiO nanoparticles shows that a strong cohesive interaction force arises among the nanoparticles and base fluid. These results divulge that TiO nanoparticles can be considered for applications in next-generation heat transfer in nanofluids.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15940360546454
2021-01-01
2024-08-31
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Singh_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15940360546454&mimeType=html&fmt=ahah

References

  1. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Beilstein J. Nanotechnol., 2018, 9, 1050 LINK https://doi.org/10.3762/bjnano.9.98 [Google Scholar]
  2. N. N. V. Sastry, A. Bhunia, T. Sundarajan, S. K. Das, Nanotechnology, 2008, 19, (5), 055704 LINK https://doi.org/10.1088/0957-4484/19/05/055704 [Google Scholar]
  3. B. A. Khuwaileh, F. I. Al-Hamadi, D. Hartanto, Z. Said, M. Ali, Ann. Nucl. Energy, 2020, 144, 107508 LINK https://doi.org/10.1016/j.anucene.2020.107508 [Google Scholar]
  4. Z. Zhang, M. Lu, H. Xu, W.-S. Chin, Chem. Eur. J., 2007, 13, (2), 632 LINK https://doi.org/10.1002/chem.200600293 [Google Scholar]
  5. K. Shah, R. V. Upadhyay, Pramana J. Phys., 2011, 77, (2), 345 LINK https://doi.org/10.1007/s12043-011-0142-z [Google Scholar]
  6. L. Guo, Y. Liang Ji, H. Xu, P. Simon, Z. Wu, J. Am. Chem. Soc., 2002, 124, (5), 14864 LINK https://doi.org/10.1021/ja027947g [Google Scholar]
  7. Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna, G. W. Ho, Nanotechnology, 2009, 20, (4), 045604 LINK https://doi.org/10.1088/0957-4484/20/4/045604 [Google Scholar]
  8. R. Komban, K. Koempe, M. Haase, Cryst. Growth Des., 2011, 11, (4), 1033 LINK https://doi.org/10.1021/cg1010314 [Google Scholar]
  9. C. Burda, S. Link, M. B. Mohamed, M. El-Sayed, J. Chem. Phys., 2002, 116, (9), 3828 LINK https://doi.org/10.1063/1.1446851 [Google Scholar]
  10. M. Benelmekki, ‘An Introduction to Nanoparticles and Nanotechnology’, in “Designing Hybrid Nanoparticles”,Morgan & Claypool Publishers, San Rafael, USA, 2015, 12 pp [Google Scholar]
  11. J. J. Wang, R. T. Zheng, J. W. Gao, G. Chen, Nano Today, 2012, 7, (2), 124 LINK https://doi.org/10.1016/j.nantod.2012.02.007 [Google Scholar]
  12. R. B. Ganvir, P. V. Walke, V. M. Kriplani, Renew. Sust. Energ. Rev., 2017, 75, 451 LINK https://doi.org/10.1016/j.rser.2016.11.010 [Google Scholar]
  13. S. M. S. Murshed, K. C. Leong, C. Yang, Int. J. Therm. Sci., 2008, 47, (5), 560 LINK https://doi.org/10.1016/j.ijthermalsci.2007.05.004 [Google Scholar]
  14. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid. Sci., 2009, 33, (4), 706 LINK https://doi.org/10.1016/j.expthermflusci.2009.01.005 [Google Scholar]
  15. A. Alashkar, M. Gadalla, Appl. Energy, 2017, 191, 469 LINK https://doi.org/10.1016/j.apenergy.2017.01.084 [Google Scholar]
  16. A. A. Hussien, M. Z. Abdullah, N. M. Yusop, M. A. Al-Nimr, M. A. Atieh, M. Mehrali, Int. J. Heat Mass Transf., 2017, 115, (Part B), 1121 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.120 [Google Scholar]
  17. S. E. Ghasemi, J. Mol. Liq., 2017, 238, 115 LINK https://doi.org/10.1016/j.molliq.2017.04.067 [Google Scholar]
  18. Z. Said, A. Allagui, M. A. Abdelkareem, H. Alawadhi, K. Elsaid, J. Colloid Interface Sci., 2018, 520, 50 LINK https://doi.org/10.1016/j.jcis.2018.02.042 [Google Scholar]
  19. M. Gupta, V. Singh, Z. Said, Sustain. Energy Technol. Assess., 2020, 39, 100720 LINK https://doi.org/10.1016/j.seta.2020.100720 [Google Scholar]
  20. G. Okeke, S. Witharana, S. J. Antony, Y. Ding, J. Nanopart. Res., 2011, 13, (12), 6365 LINK https://doi.org/10.1007/s11051-011-0389-9 [Google Scholar]
  21. W. Yu, S. U. S. Choi, J. Nanopart. Res., 2004, 6, (4), 355 LINK https://doi.org/10.1007/s11051-004-2601-7 [Google Scholar]
  22. P. K. Das, A. K. Mallik, R. Ganguly, A. K. Santra, Int. Commun. Heat Mass, 2016, 75, 341 LINK https://doi.org/10.1016/j.icheatmasstransfer.2016.05.011 [Google Scholar]
  23. V. Kaler, R. K. Duchaniya, U. Pandel, AIP Conf. Proc., 1724, (1), 020127 LINK https://doi.org/10.1063/1.4945247 [Google Scholar]
  24. L. Yang, Y. Hu, Nanoscale Res. Lett., 2017, 12, 417 LINK https://doi.org/10.1186/s11671-017-2184-8 [Google Scholar]
  25. V. Trisaksri, S. Wongwises, Int. J. Heat Mass Trans., 2009, 52, (5–6), 1582 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041 [Google Scholar]
  26. Z. Said, M. Gupta, H. Hegab, N. Arora, A. M. Khan, M. Jamil, E. Bellos, Int. J. Adv. Manuf. Technol., 2019, 105, (5–6), 2057 LINK https://doi.org/10.1007/s00170-019-04382-x [Google Scholar]
  27. S. S. Sonawane, R. S. Khedkar, K. L. Wasewar, J. Exp. Nanosci., 2015, 10, (4), 310 LINK https://doi.org/10.1080/17458080.2013.832421 [Google Scholar]
  28. Z. Said, M. A. Abdelkareem, H. Rezk, A. M. Nassef, Powder Technol., 2019, 353, 345 LINK https://doi.org/10.1016/j.powtec.2019.05.036 [Google Scholar]
  29. Z. Said, M. A. Abdelkareem, H. Rezk, A. M. Nassef, H. Z. Atwany, Powder Technol., 2020, 364, 795 LINK https://doi.org/10.1016/j.powtec.2020.02.026 [Google Scholar]
  30. M. P. Beck, Y. Yuan, P. Warrier, A. S. Teja, J. Nanoparticle Res., 2009, 11, (5), 1129 LINK https://doi.org/10.1007/s11051-008-9500-2 [Google Scholar]
  31. S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep, “Nanofluids: Science and Technology”,John Wiley & Sons Inc, Hoboken, USA, 2007, 397 pp LINK https://doi.org/10.1002/9780470180693 [Google Scholar]
  32. R. S. Khedkar, N. Shrivastava, S. S. Sonawane, K. L. Wasewar, Int. Commun. Heat. Mass Transf., 2016, 73, 54 LINK https://doi.org/10.1016/j.icheatmasstransfer.2016.02.004 [Google Scholar]
  33. S. A. Angayarkanni, J. Philip, J. Nanofluids, 2014, 3, (1), 17 LINK https://doi.org/10.1166/jon.2014.1083 [Google Scholar]
  34. R. S. Khedkar, S. S. Sonawane, K. L. Wasewar, Int. Commun. Heat Mass Transf., 2012, 39, (5), 665 LINK https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012 [Google Scholar]
  35. M. H. Esfe, M. Afrand, A. Karimipour, W.-M. Yan, N. Sina, Int. Commun. Heat Mass Transf., 2015, 67, 173 LINK https://doi.org/10.1016/j.icheatmasstransfer.2015.07.009 [Google Scholar]
  36. H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Appl. Therm. Eng., 2015, 88, 363 LINK https://doi.org/10.1016/j.applthermaleng.2014.10.071 [Google Scholar]
  37. R. Agarwal, K. Verma, N. K. Agrawal, R. K. Duchaniya, R. Singh, Appl. Therm. Eng., 2016, 102, 1024 LINK https://doi.org/10.1016/j.applthermaleng.2016.04.051 [Google Scholar]
  38. M. Leena, S. Srinivasan, M. Prabhaharan, Nanotechnol. Rev., 2015, 4, (5), 449 LINK https://doi.org/10.1515/ntrev-2015-0016 [Google Scholar]
  39. R. Kripal, U. M. Tripathi, J. Mater. Sci.: Mater. Electron., 2018, 29, (14), 12195 LINK https://doi.org/10.1007/s10854-018-9328-1 [Google Scholar]
  40. E. O. Chukwuocha, M. C. Onyeaju, T. S. T. Harry, World J. Condens. Matter Phys., 2012, 2, (2), 96 LINK https://doi.org/10.4236/wjcmp.2012.22017 [Google Scholar]
  41. M. Wan, R. R. Yadav, G. Mishra, D. Singh, B. Joshi, Johnson Matthey Technol. Rev., 2015, 59, (3), 199 LINK https://www.technology.matthey.com/article/59/3/199-206/ [Google Scholar]
  42. S. U. S. Choi, ASME Fluids Eng. Div. Summer Conf. Proc., 1995, 231, 99 [Google Scholar]
  43. Q. Z. Xue, Phys. Lett. A, 2003, 307, (5–6), 313 LINK https://doi.org/10.1016/S0375-9601(02)01728-0 [Google Scholar]
  44. R. Prasher, P. Battacharya, P. E. Phelan, Phys. Rev. Lett., 2005, 94, (2), 025901 LINK https://doi.org/10.1103/PhysRevLett.94.025901 [Google Scholar]
  45. W. Yu, H. Xie, L. Chen, Y. Li, Thermochim. Acta, 2009, 491, (1–2), 92 LINK https://doi.org/10.1016/j.tca.2009.03.007 [Google Scholar]
  46. M. Wan, R. R. Yadav, K. L. Yadav, S. B. Yadaw, Exp. Therm. Fluid Sci., 2012, 41, 158 LINK https://doi.org/10.1016/j.expthermflusci.2012.03.030 [Google Scholar]
  47. B. Raj, J. Philip, K. V. Rajkumar, P. Kalyanasundaram, Proc. Indian Nat. Sci. Acad., 2006, 72, (3), 145 [Google Scholar]
  48. D. K. Singh, D. K. Pandey, R. R. Yadav, D. Singh, Pramana J. Phys., 2012, 78, (5), 759 LINK https://doi.org/10.1007/s12043-012-0275-8 [Google Scholar]
  49. T. E. G. Álvarez-Arenas, L. E. Segura, E. R. F. de Sarabia, Ultrasonics, 2002, 39, (10), 715 LINK https://doi.org/10.1016/S0041-624X(02)00375-X [Google Scholar]
  50. V. V. Sokolov, Acoust. Phys., 2010, 56, (6), 972 LINK https://doi.org/10.1134/S1063771010060229 [Google Scholar]
  51. D. K. Singh, D. K. Pandey, R. R. Yadav, Ultrasonics, 2009, 49, (8), 634 LINK https://doi.org/10.1016/j.ultras.2009.03.005 [Google Scholar]
  52. P. S. Eptein, R. R. Carhart, J. Acoust. Soc. Am., 1953, 25, (3), 553 LINK https://doi.org/10.1121/1.1907107 [Google Scholar]
  53. S. Biwa, Y. Watanabe, S. Motogi, N. Ohno, Ultrasonics, 2004, 43, (1), 5 LINK https://doi.org/10.1016/j.ultras.2004.03.002 [Google Scholar]
/content/journals/10.1595/205651320X15940360546454
Loading
/content/journals/10.1595/205651320X15940360546454
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test