Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135
  • oa Bacterial Community Composition in Produced Water of Diyarbakır Oil Fields in Turkey

    Bacterial communities in produced waters of south-eastern Turkey reported in detail for the first time

  • Authors: Tuğçe Tüccar1, Esra Ilhan-Sungur2 and Gerard Muyzer3,4
  • Affiliations: 1 Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University34134, VeznecilerIstanbul, Turkey 2 Department of Biology, Faculty of Science, Istanbul University34134, VeznecilerIstanbul, Turkey 3 Department of Biotechnology, Delft University of Technologyvan der Maasweg 9, 2629 HZ DelftThe Netherlands 4 Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamPO Box 94240, 1090 GEAmsterdam, The Netherlands
  • Source: Johnson Matthey Technology Review, Volume 64, Issue 4, Oct 2020, p. 452 - 466
  • DOI: https://doi.org/10.1595/205651320X15911723486216
    • Published online: 01 Jan 2020

Abstract

Oil fields harbour a wide variety of microorganisms with different metabolic capabilities. To examine the microbial ecology of petroleum reservoirs, a molecular-based approach was used to assess the composition of bacterial communities in produced water of Diyarbakır oil fields in Turkey. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments was performed to characterise the bacterial community structure of produced water samples and to identify predominant community members after sequencing of separated DGGE bands. The majority of bacterial sequences retrieved from DGGE analysis of produced water samples belonged to unclassified bacteria (50%). Among the classified bacteria, (29.2%), (8.3%), (8.3%) and (4.2%) groups were identified. was the dominant genus detected in the produced water samples. The results of this research provide, for the first time, insight into the complexity of microbial communities in the Diyarbakır oil reservoirs and their dominant constituents.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15911723486216
2020-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Tuccar_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15911723486216&mimeType=html&fmt=ahah

References

  1. C. Nikolova, T. Gutierrez, Front. Microbiol., 2020, 10, 2996 LINK https://doi.org/10.3389/fmicb.2019.02996 [Google Scholar]
  2. H. Dembicki, ‘Introduction’, in “Practical Petroleum Geochemistry for Exploration and Production”, Ch. 1, Elsevier Inc, Amsterdam, The Netherlands, 2017, pp. 1–17 LINK https://doi.org/10.1016/b978-0-12-803350-0.00001-5 [Google Scholar]
  3. J. G. Speight, “Handbook of Industrial Hydrocarbon Processes”, 2nd Edn., Elsevier Inc, Cambridge, USA, 2020, 786 pp [Google Scholar]
  4. S. Romanow-Garcia, H. L. Hoffman, ‘Petroleum and Its Products’, in “Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology”, Vol. 1, 11th Edn., Springer Science and Business Media LLC, New York, USA, 2007, pp. 801–842 LINK https://doi.org/10.1007/978-0-387-27843-8_18 [Google Scholar]
  5. A. Satter, G. M. Iqbal, “Reservoir Engineering: The Fundamentals, Simulation, and Management of Conventional and Unconventional Recoveries”, Elsevier Inc, Waltham, USA, 2016, 472 pp [Google Scholar]
  6. S. J. Varjani, Bioresour. Technol., 2017, 223, 277 LINK https://doi.org/10.1016/j.biortech.2016.10.037 [Google Scholar]
  7. S. J. Varjani, E. Gnansounou, Bioresour. Technol., 2017, 245, (A), 1258 LINK https://doi.org/10.1016/j.biortech.2017.08.028 [Google Scholar]
  8. N. Youssef, M. S. Elshahed, M. J. McInerney, ‘Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities’, in “Advances in Applied Microbiology”, eds. A. I. Laskin, S. Sariaslani, G. M. Gadd, Elsevier Inc, San Diego, USA, 2009, pp. 141–251 LINK https://doi.org/10.1016/s0065-2164(08)00806-x [Google Scholar]
  9. M. Magot, O. Basso, C. Tardy-Jacquenod, P. Caumette, Int. J. Syst. Evol. Microbiol., 2004, 54, (5), 1693 LINK https://doi.org/10.1099/ijs.0.02977-0 [Google Scholar]
  10. A. Hussain, A. Hasan, A. Javid, J. I. Qazi, 3 Biotech, 2016, 6, (2), 119 LINK https://doi.org/10.1007/s13205-016-0437-3 [Google Scholar]
  11. H. Tian, P. Gao, Z. Chen, Y. Li, Y. Li, Y. Wang, J. Zhou, G. Li, T. Ma, Front. Microbiol., 2017, 8, 143 LINK https://doi.org/10.3389/fmicb.2017.00143 [Google Scholar]
  12. C. Berdugo-Clavijo, L. M. Gieg, Front. Microbiol., 2014, 5, 197 LINK https://doi.org/10.3389/fmicb.2014.00197 [Google Scholar]
  13. S. Kh. Bidzhieva, D. Sh. Sokolova, T. P. Tourova, T. N. Nazina, Microbiology, 2018, 87, (6), 757 LINK https://doi.org/10.1134/s0026261718060048 [Google Scholar]
  14. J.-F. Liu, X.-B. Sun, G.-C. Yang, S. M. Mbadinga, J.-D. Gu, B.-Z. Mu, Front. Microbiol., 2015, 6, 236 LINK https://doi.org/10.3389/fmicb.2015.00236 [Google Scholar]
  15. C. C. Okoro, O. O. Amund, Petrol. Sci. Technol., 2018, 36, (4), 293 LINK https://doi.org/10.1080/10916466.2017.1421969 [Google Scholar]
  16. S. Tamazawa, D. Mayumi, H. Mochimaru, S. Sakata, H. Maeda, T. Wakayama, M. Ikarashi, Y. Kamagata, H. Tamaki, Int. J. Syst. Evol. Microbiol., 2017, 67, (10), 3982 LINK https://doi.org/10.1099/ijsem.0.002234 [Google Scholar]
  17. J. D. Van Hamme, A. Singh, O. P. Ward, Microbiol. Mol. Biol. Rev., 2003, 67, (4), 503 LINK https://doi.org/10.1128/mmbr.67.4.503-549.2003 [Google Scholar]
  18. S. Che, Y. Men, J. Ind. Microbiol. Biotechnol., 2019, 46, (9–10), 1343 LINK https://doi.org/10.1007/s10295-019-02211-4 [Google Scholar]
  19. N. Jiménez, H. H. Richnow, C. Vogt, T. Treude, M. Krüger, J. Mol. Microbiol. Biotechnol., 2016, 26, (1–3), 227 LINK https://doi.org/10.1159/000441679 [Google Scholar]
  20. Y. Xue, G. Voordouw, Front. Microbiol., 2015, 6, 1387 LINK https://doi.org/10.3389/fmicb.2015.01387 [Google Scholar]
  21. D. Enning, J. Garrelfs, Appl. Environ. Microbiol., 2014, 80, (4), 1226 LINK https://doi.org/10.1128/aem.02848-13 [Google Scholar]
  22. J. Telegdi, A. Shaban, L. Trif, ‘Corrosion Mechanisms: Current Knowledge, Gaps and Future Research: Microbiologically Influenced Corrosion (MIC)’, in “Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission”, ed. A. M. El-Sherik, Elsevier Ltd, Duxford, UK, 2017, pp. 191–214 LINK https://doi.org/10.1016/b978-0-08-101105-8.00008-5 [Google Scholar]
  23. S. Kato, Microb. Biotechnol., 2016, 9, (2), 141 LINK https://doi.org/10.1111/1751-7915.12340 [Google Scholar]
  24. R. F. Wright, P. Lu, J. Devkota, F. Lu, M. Ziomek-Moroz, P. R. Ohodnicki, Sensors, 2019, 19, (18), 3964 LINK https://doi.org/10.3390/s19183964 [Google Scholar]
  25. M. Safdel, M. A. Anbaz, A. Daryasafar, M. Jamialahmadi, Renew. Sustain. Energy Rev., 2017, 74, 159 LINK https://doi.org/10.1016/j.rser.2017.02.045 [Google Scholar]
  26. S. J. Green, M. B. Leigh, J. D. Neufeld, ‘Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis’, in “Hydrocarbon and Lipid Microbiology Protocols: Microbial Quantitation, Community Profiling and Array Approaches”, eds. T. J. McGenity, K. N. Timmis, B. Nogales, Springer-Verlag, Berlin, Germany, 2017, pp. 77–100 LINK https://doi.org/10.1007/8623_2015_99 [Google Scholar]
  27. G. Muyzer, E. C. de Waal, A. G. Uitterlinden, Appl. Environ. Microbiol., 1993, 59, (3), 695 LINK https://doi.org/10.1128/aem.59.3.695-700.1993 [Google Scholar]
  28. G. Muyzer, A. Teske, C. O. Wirsen, H. W. Jannasch, Arch. Microbiol., 1995, 164, 165 LINK https://doi.org/10.1007/BF02529967 [Google Scholar]
  29. Basic Local Alignment Search Tool (BLAST®),, National Center for Biotechnology Information, US National Library of Medicine, Bethesda, MD, USA, 18th June, 2020 LINK http://blast.ncbi.nlm.nih.gov/Blast.cgi
  30. T. L. Skovhus, N. B. Ramsing, C. Holmström, S. Kjelleberg, I. Dahllöf, Appl. Environ. Microbiol., 2004, 70, (4), 2373 LINK https://doi.org/10.1128/aem.70.4.2373-2382.2004 [Google Scholar]
  31. S. Kanso, B. K. C. Patel, Int. J. Syst. Evol. Microbiol., 2004, 54, (6), 2141 LINK https://doi.org/10.1099/ijs.0.63138-0 [Google Scholar]
  32. J. Lalucat, A. Bennasar, R. Bosch, E. García-Valdés, N. J. Palleroni, Microbiol. Mol. Biol. Rev., 2006, 70, (2), 510 LINK https://doi.org/10.1128/mmbr.00047-05 [Google Scholar]
  33. D. L. Gutnick, H. Bach, ‘Potential Application of Acinetobacter in Biotechnology’, in Acinetobacter: Molecular Biology”, ed. U. Gerischer, Caister Academic Press, Caister, UK, 2008, pp. 231–264 [Google Scholar]
  34. M. Baumgartner, K. O. Stetter, W. Foissner, J. Eukaryot. Microbiol., 2002, 49, (3), 227 LINK https://doi.org/10.1111/j.1550-7408.2002.tb00527.x [Google Scholar]
  35. G. M. van der Kraan, J. Bruining, B. P. Lomans, M. C. M. van Loosdrecht, G. Muyzer, FEMS Microbiol. Ecol., 2010, 71, (3), 428 LINK https://doi.org/10.1111/j.1574-6941.2009.00813.x [Google Scholar]
  36. D. P. Kelly, A. P. Wood, Int. J. Syst. Evol. Microbiol., 2000, 50, (2), 511 LINK https://doi.org/10.1099/00207713-50-2-511 [Google Scholar]
  37. H. Dang, R. Chen, L. Wang, S. Shao, L. Dai, Y. Ye, L. Guo, G. Huang, M. G. Klotz, Environ. Microbiol., 2011, 13, (11), 3059 LINK https://doi.org/10.1111/j.1462-2920.2011.02583.x [Google Scholar]
  38. A. C. Cihan, B. Ozcan, N. Tekin, C. Cokmus, World J. Microbiol. Biotechnol., 2011, 27, (11), 2683 LINK https://doi.org/10.1007/s11274-011-0742-2 [Google Scholar]
  39. B. J. Mathis, C. W. Marshall, C. E. Milliken, R. S. Makkar, S. E. Creager, H. D. May, Appl. Microbiol. Biotechnol., 2008, 78, (1), 147 LINK https://doi.org/10.1007/s00253-007-1266-4 [Google Scholar]
  40. H. Kobayashi, K. Endo, S. Sakata, D. Mayumi, H. Kawaguchi, M. Ikarashi, Y. Miyagawa, H. Maeda, K. Sato, J. Biosci. Bioeng., 2012, 113, (2), 204 LINK https://doi.org/10.1016/j.jbiosc.2011.09.015 [Google Scholar]
  41. L. Cheng, J. Rui, Q. Li, H. Zhang, Y. Lu, FEMS Microbiol. Ecol., 2013, 83, (3), 757 LINK https://doi.org/10.1111/1574-6941.12031 [Google Scholar]
  42. S. G. Woo, Y. Cui, M.-S. Kang, L. Jin, K. K. Kim, S. T. Lee, M. Lee, J. Park, Int. J. Syst. Evol. Microbiol., 2012, 62, (7), 1703 LINK https://doi.org/10.1099/ijs.0.033217-0 [Google Scholar]
  43. Y. Toptaş, M. Çelikdemir, C. Tuncer, Y. B. Şahin, P. A. Çelik, N. Burnak, A. Çabuk, V. Bütün, Turkish J. Biochem., 2016, 41, (5), 338 LINK https://doi.org/10.1515/tjb-2016-0049 [Google Scholar]
  44. N. Ali, N. Dashti, M. Khanafer, H. Al-Awadhi, S. Radwan, Sci. Rep., 2020, 10, 1116 LINK https://doi.org/10.1038/s41598-019-57224-x [Google Scholar]
  45. S. S. Radwan, D. M. Al-Mailem, M. K. Kansour, Sci. Rep., 2019, 9, 19508 LINK https://doi.org/10.1038/s41598-019-56099-2 [Google Scholar]
  46. T. B. P. Oldenburg, S. R. Larter, J. J. Adams, M. Clements, C. Hubert, A. K. Rowan, A. Brown, I. M. Head, A. A. Grigoriyan, G. Voordouw, M. Fustic, Anal. Chem., 2009, 81, (10), 4130 LINK https://doi.org/10.1021/ac8025515 [Google Scholar]
  47. V. J. Orphan, L. T. Taylor, D. Hafenbradl, E. F. Delong, Appl. Environ. Microbiol., 2000, 66, (2), 700 LINK https://doi.org/10.1128/aem.66.2.700-711.2000 [Google Scholar]
  48. H. Li, S.-Z. Yang, B.-Z. Mu, Z.-F. Rong, J. Zhang, FEMS Microbiol. Ecol., 2007, 60, (1), 74 LINK https://doi.org/10.1111/j.1574-6941.2006.00266.x [Google Scholar]
  49. J. Wang, T. Ma, L. Zhao, J. Lv, G. Li, F. Liang, R. Liu, World J. Microbiol. Biotechnol., 2008, 24, (9), 1981 LINK https://doi.org/10.1007/s11274-008-9694-6 [Google Scholar]
  50. R. Kumaraswamy, S. Ebert, M. R. Gray, P. M. Fedorak, J. M. Foght, Appl. Microbiol. Biotechnol., 2010, 89, (6), 2027 LINK https://doi.org/10.1007/s00253-010-2974-8 [Google Scholar]
  51. N. Lenchi, Ö. İnceoğlu, S. Kebbouche-Gana, M. L. Gana, M. Llirós, P. Servais, T. García-Armisen, PLoS One, 2013, 8, (6), e66588 LINK https://doi.org/10.1371/journal.pone.0066588 [Google Scholar]
  52. K. Lewis, S. Epstein, A. D’Onofrio, L. L. Ling, J. Antibiot., 2010, 63, (8), 468 LINK https://doi.org/10.1038/ja.2010.87 [Google Scholar]
  53. A. Bodor, N. Bounedjoum, G. E. Vincze, Á. Erdeiné Kis, K. Laczi, G. Bende, Á. Szilágyi, T. Kovács, K. Perei, G. Rákhely, Rev. Environ. Sci. Bio/Technol., 2020, 19, (1), 1 LINK https://doi.org/10.1007/s11157-020-09522-4 [Google Scholar]
  54. H. Zhao, Y. Zhang, X. Xiao, G. Li, Y. Zhao, Y. Liang, Int. Biodeterior. Biodegrad., 2017, 117, 269 LINK https://doi.org/10.1016/j.ibiod.2016.12.016 [Google Scholar]
  55. J. You, G. Wu, F. Ren, Q. Chang, B. Yu, Y. Xue, B. Mu, Appl. Microbiol. Biotechnol., 2016, 100, (3), 1469 LINK https://doi.org/10.1007/s00253-015-7073-4 [Google Scholar]
  56. W.-F. Song, J.-W. Wang, Y.-C. Yan, L.-Y. An, F. Zhang, L. Wang, Y. Xu, M.-Z. Tian, Y. Nie, X.-L. Wu, Int. Biodet. Biodeg., 2018, 132, 18 LINK https://doi.org/10.1016/j.ibiod.2018.04.015 [Google Scholar]
  57. X. Wang, X. Li, L. Yu, L. Huang, J. Xiu, W. Lin, Y. Zhang, Sci. Total Environ., 2019, 653, 872 LINK https://doi.org/10.1016/j.scitotenv.2018.10.410 [Google Scholar]
  58. T. Tüccar, E. Ilhan-Sungur, B. Abbas, G. Muyzer, Anaerobe, 2019, 59, 19 LINK https://doi.org/10.1016/j.anaerobe.2019.04.008 [Google Scholar]
  59. M. Pannekens, L. Kroll, H. Müller, F. T. Mbow, R. U. Meckenstock, New Biotechnol., 2019, 49, 1 LINK https://doi.org/10.1016/j.nbt.2018.11.006 [Google Scholar]
  60. J. Eberspächer, F. Lingens, ‘The Genus Phenylobacterium’, in “The Prokaryotes”, eds. M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt, Vol. 5, 3rd Edn., Springer Science and Business Media LLC, New York, USA, 2006, pp. 250–256 [Google Scholar]
  61. G. T. Mehetre, S. G. Dastager, M. S. Dharne, Sci. Total Environ., 2019, 679, 52 LINK https://doi.org/10.1016/j.scitotenv.2019.04.376 [Google Scholar]
  62. Ç. Babaarslan, A. Tekeli, T. Mehmetoğlu, Energy Sources, 2003, 25, (7), 733 LINK https://doi.org/10.1080/00908310390212408 [Google Scholar]
  63. T. Kaya, ‘Çeşitli endüstriyel atık maddelerde bazı mikroorganızmaların yüzey aktif özelliklerinin incelenmesi’ [‘Research of Surface Active Properties of Some Microorganisms in Various Industrial Wastes’], Masters Thesis, Biology Department, Gazi University, Ankara, Turkey, 28th April, 2008, 126 pp [Google Scholar]
  64. F. Zhao, C. Guo, Q. Cui, Q. Hao, J. Xiu, S. Han, Y. Zhang, Carbohyd. Polym., 2018, 199, 375 LINK https://doi.org/10.1016/j.carbpol.2018.07.038 [Google Scholar]
  65. A. Afifi, H. Motamedi, B. Alizadeh, H. Leilavi, Environ. Experi. Biol., 2015, 13, (1), 13 LINK http://eeb.lu.lv/EEB/201503/EEB_XII_1_Afifi.shtml [Google Scholar]
  66. Y. Anwar, A. A. El-Hanafy, J. S. M. Sabir, S. M. S. Al-Garni, K. Al-Ghamdi, H. Almehdar, M. Waqas, Polycyc. Aromat. Comp., 2020, 40, (1), 135 LINK https://doi.org/10.1080/10406638.2017.1382542 [Google Scholar]
  67. M. Magot, ‘Indigenous Microbial Communities in Oil Fields’, in “Petroleum Microbiology”, eds. B. Ollivier, M. Magot, ASM Press, Washington, DC, USA, 2005, pp. 21–34 [Google Scholar]
  68. F. Zhang, Y.-H. She, I. M. Banat, L.-J. Chai, L.-Q. Huang, S.-J. Yi, Z.-L. Wang, H.-L. Dong, D.-J. Hou, MicrobiologyOpen, 2014, 3, (4), 446 LINK https://doi.org/10.1002/mbo3.179 [Google Scholar]
  69. F. Fan, B. Zhang, P. L. Morrill, T. Husain, RSC Adv., 2018, 8, (47), 26596 LINK https://doi.org/10.1039/c8ra03377c [Google Scholar]
  70. X. Zhu, M. A. Al-Moniee, ‘Corrosion Inhibitors – Advancements in Testing: Molecular Microbiology Techniques’, in “Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission”, ed. A. M. El-Sherik, Elsevier Ltd, Duxford, UK, 2017, pp. 513–536 LINK https://doi.org/10.1016/b978-0-08-101105-8.00022-x [Google Scholar]
/content/journals/10.1595/205651320X15911723486216
Loading
/content/journals/10.1595/205651320X15911723486216
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test