Skip to content
Volume 64, Issue 4
  • ISSN: 2056-5135


Oil fields harbour a wide variety of microorganisms with different metabolic capabilities. To examine the microbial ecology of petroleum reservoirs, a molecular-based approach was used to assess the composition of bacterial communities in produced water of Diyarbakır oil fields in Turkey. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments was performed to characterise the bacterial community structure of produced water samples and to identify predominant community members after sequencing of separated DGGE bands. The majority of bacterial sequences retrieved from DGGE analysis of produced water samples belonged to unclassified bacteria (50%). Among the classified bacteria, (29.2%), (8.3%), (8.3%) and (4.2%) groups were identified. was the dominant genus detected in the produced water samples. The results of this research provide, for the first time, insight into the complexity of microbial communities in the Diyarbakır oil reservoirs and their dominant constituents.


Article metrics loading...

Loading full text...

Full text loading...



  1. Nikolova C., and Gutierrez T. Front. Microbiol., 2020, 10, 2996 LINK [Google Scholar]
  2. Dembicki H. ‘Introduction’, in “Practical Petroleum Geochemistry for Exploration and Production”, Ch. 1, Elsevier Inc, Amsterdam, The Netherlands, 2017, pp. 1–17 LINK [Google Scholar]
  3. Speight J. G. “Handbook of Industrial Hydrocarbon Processes”, 2nd Edn., Elsevier Inc, Cambridge, USA, 2020, 786 pp [Google Scholar]
  4. Romanow-Garcia S., and Hoffman H. L. ‘Petroleum and Its Products’, in “Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology”, Vol. 1, 11th Edn., Springer Science and Business Media LLC, New York, USA, 2007, pp. 801–842 LINK [Google Scholar]
  5. Satter A., and Iqbal G. M. “Reservoir Engineering: The Fundamentals, Simulation, and Management of Conventional and Unconventional Recoveries”, Elsevier Inc, Waltham, USA, 2016, 472 pp [Google Scholar]
  6. Varjani S. J. Bioresour. Technol., 2017, 223, 277 LINK [Google Scholar]
  7. Varjani S. J., and Gnansounou E. Bioresour. Technol., 2017, 245, (A), 1258 LINK [Google Scholar]
  8. Youssef N., Elshahed M. S., McInerney M. J., ‘Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities’, in “Advances in Applied Microbiology”, eds. Laskin A. I., Sariaslani S., and Gadd G. M. Elsevier Inc, San Diego, USA, 2009, pp. 141–251 LINK [Google Scholar]
  9. Magot M., Basso O., Tardy-Jacquenod C., and Caumette P. Int. J. Syst. Evol. Microbiol., 2004, 54, (5), 1693 LINK [Google Scholar]
  10. Hussain A., Hasan A., Javid A., and Qazi J. I. 3 Biotech, 2016, 6, (2), 119 LINK [Google Scholar]
  11. Tian H., Gao P., Chen Z., Li Y., Li Y., Wang Y., Zhou J., Li G., and Ma T. Front. Microbiol., 2017, 8, 143 LINK [Google Scholar]
  12. Berdugo-Clavijo C., and Gieg L. M. Front. Microbiol., 2014, 5, 197 LINK [Google Scholar]
  13. Bidzhieva S. Kh., Sokolova D. Sh., Tourova T. P., and Nazina T. N. Microbiology, 2018, 87, (6), 757 LINK [Google Scholar]
  14. Liu J.-F., Sun X.-B., Yang G.-C., Mbadinga S. M., Gu J.-D., and Mu B.-Z. Front. Microbiol., 2015, 6, 236 LINK [Google Scholar]
  15. Okoro C. C., and Amund O. O. Petrol. Sci. Technol., 2018, 36, (4), 293 LINK [Google Scholar]
  16. Tamazawa S., Mayumi D., Mochimaru H., Sakata S., Maeda H., Wakayama T., Ikarashi M., Kamagata Y., and Tamaki H. Int. J. Syst. Evol. Microbiol., 2017, 67, (10), 3982 LINK [Google Scholar]
  17. Van Hamme J. D., Singh A., and Ward O. P. Microbiol. Mol. Biol. Rev., 2003, 67, (4), 503 LINK [Google Scholar]
  18. Che S., and Men Y. J. Ind. Microbiol. Biotechnol., 2019, 46, (9–10), 1343 LINK [Google Scholar]
  19. Jiménez N., Richnow H. H., Vogt C., Treude T., and Krüger M. J. Mol. Microbiol. Biotechnol., 2016, 26, (1–3), 227 LINK [Google Scholar]
  20. Xue Y., and Voordouw G. Front. Microbiol., 2015, 6, 1387 LINK [Google Scholar]
  21. Enning D., and Garrelfs J. Appl. Environ. Microbiol., 2014, 80, (4), 1226 LINK [Google Scholar]
  22. Telegdi J., Shaban A., Trif L., ‘Corrosion Mechanisms: Current Knowledge, Gaps and Future Research: Microbiologically Influenced Corrosion (MIC)’, in “Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission”, ed. and El-Sherik A. M. Elsevier Ltd, Duxford, UK, 2017, pp. 191–214 LINK [Google Scholar]
  23. Kato S. Microb. Biotechnol., 2016, 9, (2), 141 LINK [Google Scholar]
  24. Wright R. F., Lu P., Devkota J., Lu F., Ziomek-Moroz M., and Ohodnicki P. R. Sensors, 2019, 19, (18), 3964 LINK [Google Scholar]
  25. Safdel M., Anbaz M. A., Daryasafar A., and Jamialahmadi M. Renew. Sustain. Energy Rev., 2017, 74, 159 LINK [Google Scholar]
  26. Green S. J., Leigh M. B., Neufeld J. D., ‘Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis’, in “Hydrocarbon and Lipid Microbiology Protocols: Microbial Quantitation, Community Profiling and Array Approaches”, eds. McGenity T. J., Timmis K. N., and Nogales B. Springer-Verlag, Berlin, Germany, 2017, pp. 77–100 LINK [Google Scholar]
  27. Muyzer G., de Waal E. C., and Uitterlinden A. G. Appl. Environ. Microbiol., 1993, 59, (3), 695 LINK [Google Scholar]
  28. Muyzer G., Teske A., Wirsen C. O., and Jannasch H. W. Arch. Microbiol., 1995, 164, 165 LINK [Google Scholar]
  29. Basic Local Alignment Search Tool (BLAST®), National Center for Biotechnology Information, US National Library of Medicine, Bethesda, MD, USA, 18th June, 2020 LINK
  30. Skovhus T. L., Ramsing N. B., Holmström C., Kjelleberg S., and Dahllöf I. Appl. Environ. Microbiol., 2004, 70, (4), 2373 LINK [Google Scholar]
  31. Kanso S., and Patel B. K. C. Int. J. Syst. Evol. Microbiol., 2004, 54, (6), 2141 LINK [Google Scholar]
  32. Lalucat J., Bennasar A., Bosch R., García-Valdés E., and Palleroni N. J. Microbiol. Mol. Biol. Rev., 2006, 70, (2), 510 LINK [Google Scholar]
  33. Gutnick D. L., Bach H., ‘Potential Application of Acinetobacter in Biotechnology’, in Acinetobacter: Molecular Biology”, ed. and Gerischer U. Caister Academic Press, Caister, UK, 2008, pp. 231–264 [Google Scholar]
  34. Baumgartner M., Stetter K. O., and Foissner W. J. Eukaryot. Microbiol., 2002, 49, (3), 227 LINK [Google Scholar]
  35. van der Kraan G. M., Bruining J., Lomans B. P., van Loosdrecht M. C. M., and Muyzer G. FEMS Microbiol. Ecol., 2010, 71, (3), 428 LINK [Google Scholar]
  36. Kelly D. P., and Wood A. P. Int. J. Syst. Evol. Microbiol., 2000, 50, (2), 511 LINK [Google Scholar]
  37. Dang H., Chen R., Wang L., Shao S., Dai L., Ye Y., Guo L., Huang G., and Klotz M. G. Environ. Microbiol., 2011, 13, (11), 3059 LINK [Google Scholar]
  38. Cihan A. C., Ozcan B., Tekin N., and Cokmus C. World J. Microbiol. Biotechnol., 2011, 27, (11), 2683 LINK [Google Scholar]
  39. Mathis B. J., Marshall C. W., Milliken C. E., Makkar R. S., Creager S. E., and May H. D. Appl. Microbiol. Biotechnol., 2008, 78, (1), 147 LINK [Google Scholar]
  40. Kobayashi H., Endo K., Sakata S., Mayumi D., Kawaguchi H., Ikarashi M., Miyagawa Y., Maeda H., and Sato K. J. Biosci. Bioeng., 2012, 113, (2), 204 LINK [Google Scholar]
  41. Cheng L., Rui J., Li Q., Zhang H., and Lu Y. FEMS Microbiol. Ecol., 2013, 83, (3), 757 LINK [Google Scholar]
  42. Woo S. G., Cui Y., Kang M.-S., Jin L., Kim K. K., Lee S. T., Lee M., and Park J. Int. J. Syst. Evol. Microbiol., 2012, 62, (7), 1703 LINK [Google Scholar]
  43. Toptaş Y., Çelikdemir M., Tuncer C., Şahin Y. B., Çelik P. A., Burnak N., Çabuk A., and Bütün V. Turkish J. Biochem., 2016, 41, (5), 338 LINK [Google Scholar]
  44. Ali N., Dashti N., Khanafer M., Al-Awadhi H., and Radwan S. Sci. Rep., 2020, 10, 1116 LINK [Google Scholar]
  45. Radwan S. S., Al-Mailem D. M., and Kansour M. K. Sci. Rep., 2019, 9, 19508 LINK [Google Scholar]
  46. Oldenburg T. B. P., Larter S. R., Adams J. J., Clements M., Hubert C., Rowan A. K., Brown A., Head I. M., Grigoriyan A. A., Voordouw G., and Fustic M. Anal. Chem., 2009, 81, (10), 4130 LINK [Google Scholar]
  47. Orphan V. J., Taylor L. T., Hafenbradl D., and Delong E. F. Appl. Environ. Microbiol., 2000, 66, (2), 700 LINK [Google Scholar]
  48. Li H., Yang S.-Z., Mu B.-Z., Rong Z.-F., and Zhang J. FEMS Microbiol. Ecol., 2007, 60, (1), 74 LINK [Google Scholar]
  49. Wang J., Ma T., Zhao L., Lv J., Li G., Liang F., and Liu R. World J. Microbiol. Biotechnol., 2008, 24, (9), 1981 LINK [Google Scholar]
  50. Kumaraswamy R., Ebert S., Gray M. R., Fedorak P. M., and Foght J. M. Appl. Microbiol. Biotechnol., 2010, 89, (6), 2027 LINK [Google Scholar]
  51. Lenchi N., İnceoğlu Ö., Kebbouche-Gana S., Gana M. L., Llirós M., Servais P., and García-Armisen T. PLoS One, 2013, 8, (6), e66588 LINK [Google Scholar]
  52. Lewis K., Epstein S., D’Onofrio A., and Ling L. L. J. Antibiot., 2010, 63, (8), 468 LINK [Google Scholar]
  53. Bodor A., Bounedjoum N., Vincze G. E., Erdeiné Kis Á., Laczi K., Bende G., Szilágyi Á., Kovács T., Perei K., and Rákhely G. Rev. Environ. Sci. Bio/Technol., 2020, 19, (1), 1 LINK [Google Scholar]
  54. Zhao H., Zhang Y., Xiao X., Li G., Zhao Y., and Liang Y. Int. Biodeterior. Biodegrad., 2017, 117, 269 LINK [Google Scholar]
  55. You J., Wu G., Ren F., Chang Q., Yu B., Xue Y., and Mu B. Appl. Microbiol. Biotechnol., 2016, 100, (3), 1469 LINK [Google Scholar]
  56. Song W.-F., Wang J.-W., Yan Y.-C., An L.-Y., Zhang F., Wang L., Xu Y., Tian M.-Z., Nie Y., and Wu X.-L. Int. Biodet. Biodeg., 2018, 132, 18 LINK [Google Scholar]
  57. Wang X., Li X., Yu L., Huang L., Xiu J., Lin W., and Zhang Y. Sci. Total Environ., 2019, 653, 872 LINK [Google Scholar]
  58. Tüccar T., Ilhan-Sungur E., Abbas B., and Muyzer G. Anaerobe, 2019, 59, 19 LINK [Google Scholar]
  59. Pannekens M., Kroll L., Müller H., Mbow F. T., and Meckenstock R. U. New Biotechnol., 2019, 49, 1 LINK [Google Scholar]
  60. Eberspächer J., Lingens F., ‘The Genus Phenylobacterium’, in “The Prokaryotes”, eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., and Stackebrandt E. Vol. 5, 3rd Edn., Springer Science and Business Media LLC, New York, USA, 2006, pp. 250–256 [Google Scholar]
  61. Mehetre G. T., Dastager S. G., and Dharne M. S. Sci. Total Environ., 2019, 679, 52 LINK [Google Scholar]
  62. Babaarslan Ç., Tekeli A., and Mehmetoğlu T. Energy Sources, 2003, 25, (7), 733 LINK [Google Scholar]
  63. Kaya T. ‘Çeşitli endüstriyel atık maddelerde bazı mikroorganızmaların yüzey aktif özelliklerinin incelenmesi’ [‘Research of Surface Active Properties of Some Microorganisms in Various Industrial Wastes’], Masters Thesis, Biology Department, Gazi University, Ankara, Turkey, 28th April, 2008, 126 pp [Google Scholar]
  64. Zhao F., Guo C., Cui Q., Hao Q., Xiu J., Han S., and Zhang Y. Carbohyd. Polym., 2018, 199, 375 LINK [Google Scholar]
  65. Afifi A., Motamedi H., Alizadeh B., and Leilavi H. Environ. Experi. Biol., 2015, 13, (1), 13 LINK [Google Scholar]
  66. Anwar Y., El-Hanafy A. A., Sabir J. S. M., Al-Garni S. M. S., Al-Ghamdi K., Almehdar H., and Waqas M. Polycyc. Aromat. Comp., 2020, 40, (1), 135 LINK [Google Scholar]
  67. Magot M., ‘Indigenous Microbial Communities in Oil Fields’, in “Petroleum Microbiology”, eds. Ollivier B., and Magot M. ASM Press, Washington, DC, USA, 2005, pp. 21–34 [Google Scholar]
  68. Zhang F., She Y.-H., Banat I. M., Chai L.-J., Huang L.-Q., Yi S.-J., Wang Z.-L., Dong H.-L., and Hou D.-J. MicrobiologyOpen, 2014, 3, (4), 446 LINK [Google Scholar]
  69. Fan F., Zhang B., Morrill P. L., and Husain T. RSC Adv., 2018, 8, (47), 26596 LINK [Google Scholar]
  70. Zhu X., Al-Moniee M. A., ‘Corrosion Inhibitors – Advancements in Testing: Molecular Microbiology Techniques’, in “Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission”, ed. and El-Sherik A. M. Elsevier Ltd, Duxford, UK, 2017, pp. 513–536 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error