Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

Since cave ecosystems have extraordinary environmental conditions, these ecosystems offer opportunities for microbiological studies. In this study, cultivable bacteria isolated from Parsık cave, Turkey, were investigated regarding enzyme profiles, antibiotic resistance and potential for production of antimicrobial agents. The metabolic properties of 321 bacterial isolates were determined. The most produced enzyme by the isolates was found to be tyrosine arylamidase. The enzymatic reactions of the bacteria showed that Parsık cave isolates have high aminopeptidase activity. The highest antibiotic resistance frequency of the isolates was 38.6% against ampicillin. While the isolates displayed variable inhibition rates against tested pathogenic microorganisms, they showed the highest inhibition against The results show that the bacteria isolated from Parsık cave have potential for further studies related to biotechnological applications. The study findings contribute increased knowledge on metabolic peculiarities of bacteria isolated from cave ecosystems.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15923194903811
2020-01-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Candiroglu_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15923194903811&mimeType=html&fmt=ahah

References

  1. C. Schabereiter-Gurtner, C. Saiz-Jimenez, G. Piñar, W. Lubitz, S. Rölleke, FEMS Microbiol. Ecol., 2004, 47, (2), 235 LINK https://doi.org/10.1016/S0168-6496(03)00280-0 [Google Scholar]
  2. H. A. Barton, J. Caves Karst Stud., 2006, 68, (2), 43 LINK https://caves.org/pub/journal/PDF/V68/v68n2-Barton.pdf [Google Scholar]
  3. L. C. Kelly, C. S. Cockell, A. Herrera-Belaroussi, Y. Piceno, G. Andersen, T. DeSantis, E. Brodie, T. Thorsteinsson, V. Marteinsson, F. Poly, X. LeRoux, Microb. Ecol., 2011, 62, (1), 69 LINK https://doi.org/10.1007/s00248-011-9864-1 [Google Scholar]
  4. S. Cuezva, A. Fernandez-Cortes, E. Porca, L. Pašić, V. Jurado, M. Hernandez-Marine, P. Serrano-Ortiz, B. Hermosin, J. C. Cañaveras, S. Sanchez-Moral, C. Saiz-Jimenez, FEMS Microbiol. Ecol., 2012, 81, (1), 281 LINK https://doi.org/10.1111/j.1574-6941.2012.01391.x [Google Scholar]
  5. A. Rusznyák, D. M. Akob, S. Nietzsche, K. Eusterhues, K. U. Totsche, T. R. Neu, T. Frosch, J. Popp, R. Keiner, J. Geletneky, L. Katzschmann, E.-D. Schulze, K. Küsel, Appl. Environ. Microbiol., 2012, 78, (4), 1157 LINK https://doi.org/10.1128/AEM.06568-11 [Google Scholar]
  6. S. U. U. Jamil, S. Zada, I. Khan, W. Sajjad, M. Rafiq, A. A. Shah, F. Hasan, J. Caves Karst Stud., 2017, 79, (1), 73 LINK https://caves.org/pub/journal/PDF/V79/cave-79-01-73.pdf [Google Scholar]
  7. N. K. Dhami, M. E. C. Quirin, A. Mukherjee, Ecol. Eng., 2017, 103, (A), 106 LINK https://doi.org/10.1016/j.ecoleng.2017.03.007 [Google Scholar]
  8. A. Nugroho, A. Sumarno, L. N. Ngeljaratan, D. Zulfiana, N. P. R. A. Krishanti, T. Triastutil, E. Widodo, J. Kim. Terap. Indones., 2019, 21, (1), 7 LINK https://inajac.lipi.go.id/index.php/InaJAC/article/view/411/483 [Google Scholar]
  9. A. A. Elmanama, M. T. Alhour, J. Adv. Sci. Eng. Res., 2013, 3, (4), 388 LINK http://www.sign-ific-ance.co.uk/index.php/JASER/article/view/313 [Google Scholar]
  10. S. Krishnapriya, D. L. Venkatesh Babu, G. Prince Arulraj, Microbiol Res., 2015, 174, 48 LINK https://doi.org/10.1016/j.micres.2015.03.009 [Google Scholar]
  11. A. I. Omoregie, ‘Isolation, Identification and Characterisation of Urease-Producing Bacteria from Limestone Caves of Sarawak’, in ‘Characterization of Ureolytic Bacteria Isolated from Limestone Caves of Sarawak and Evaluation of their Efficiency in Biocementation’, Master of Science (Research) Thesis, Chapter 2, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Melbourne, Australia, 2016, pp 41–92 [Google Scholar]
  12. S. Mondal, D. Palit, ‘Effective Role of Microorganism in Waste Management and Environmental Sustainability’, in “Sustainable Agriculture, Forest and Environmental Management”, Eds. M. K. Jhariya, A. Banerjee, R. S. Meena, D. K. Yadav, Springer Nature Singapore Pte Ltd, Singapore, 2019, pp 485–515 LINK https://doi.org/10.1007/978-981-13-6830-1_14 [Google Scholar]
  13. C. Gerday, M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D’Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M.-A. Meuwis, G. Feller, Trends Biotechnol., 2000, 18, (3), 103 LINK https://doi.org/10.1016/S0167-7799(99)01413-4 [Google Scholar]
  14. M. S. Cabeza, F. L. Baca, E. M. Puntes, F. Loto, M. D. Baigorí, V. I. Morata, Food Technol. Biotech., 2011, 49, (2), 187 LINK https://hrcak.srce.hr/69458 [Google Scholar]
  15. Z. Kmietowicz, Brit. Med. J., 2017, 358, j4430 LINK https://doi.org/10.1136/bmj.j4430 [Google Scholar]
  16. K. Herold, F. A. Gollmick, I. Groth, M. Roth, K.-D. Menzel, U. Möllmann, U. Gräfe, C. Hertweck, Chem. Eur. J., 2005, 11, (19), 5523 LINK https://doi.org/10.1002/chem.200590060 [Google Scholar]
  17. Z. Jiang, L. Guo, C. Chen, S. Liu, L. Zhang, S. Dai, Q. He, X. You, X. Hu, L. Tuo, W. Jiang, C. Sun, J. Antibiot., 2015, 68, (12), 771 LINK https://doi.org/10.1038/ja.2015.70 [Google Scholar]
  18. D. K. Derewacz, C. R. McNees, G. Scalmani, C. L. Covington, G. Shanmugam, L. J. Marnett, P. L. Polavarapu, B. O. Bachmann, J. Nat. Prod., 2014, 77, (8), 1759 LINK https://doi.org/10.1021/np400742p [Google Scholar]
  19. V. M. D’Costa, C. E. King, L. Kalan, M. Morar, W. W. L. Sung, C. Schwartz, D. Froese, G. Zazula, F. Calmels, R. Debruyne, G. B. Golding, H. N. Poinar, G. D. Wright, Nature, 2011, 477, (7365), 457 LINK https://doi.org/10.1038/nature10388 [Google Scholar]
  20. J. R. Nodwell, J. Bacteriol., 2007, 189, (10), 3683 LINK https://doi.org/10.1128/JB.00356-07 [Google Scholar]
  21. S. Massa, M. Caruso, F. Trovatelli, M. Tosques, World J. Microbiol. Biotechnol., 1998, 14, (5), 727 LINK https://doi.org/10.1023/A:1008893627877 [Google Scholar]
  22. N. Doğruöz Güngör, N. Ö. Şanlı Yürüdü, “The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs”, ed. A. Méndez-Vilas, Vol. 5, Formatex, Badajoz, Spain, 2015, pp 923–929 [Google Scholar]
  23. D. H. Pincus, ‘Microbial Identification Using the bioMérieux VITEK® 2 System’, in “Encyclopedia of Rapid Microbiological Methods”, ed. M. J. Miller, Parenteral Drug Association, Bethesda, USA, 2006, pp 1–32 [Google Scholar]
  24. K. B. Ritchie, M. Schwarz, J. Mueller, V. A. Lapacek, D. Merselis, C. J. Walsh, C. A. Luer, Front. Microbiol., 2017, 8, 1050 LINK https://doi.org/10.3389/fmicb.2017.01050 [Google Scholar]
  25. M. J. Ferraro, M. A. Wikler, W. A. Craig, M. N. Dudley, G. M. Eliopoulos, D. W. Hecht, J. Hindler, L. Barth Reller, A. T. Sheldon, J. M. Swenson, F. C. Tenover, R. T. Testa, M. P. Weinstein, ‘Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard’, 8th Edn., M2-A8, Vol. 23, No. 1, National Committee for Clinical Laboratory Standards (NCCLS), Wayne, USA, 2003, 63 pp [Google Scholar]
  26. S. Leuko, K. Koskinen, L. Sanna, I. M. D’Angeli, J. De Waele, P. Marcia, C. Moissl-Eichinger, P. Rettberg, PLoS One, 2017, 12, (7), e0180700 LINK https://doi.org/10.1371/journal.pone.0180700 [Google Scholar]
  27. K. H. Lavoie, A. S. Winter, K. J. H. Read, E. M. Hughes, M. N. Spilde, D. E. Northup, PloS One, 2017, 12, (2), e0169339 LINK https://doi.org/10.1371/journal.pone.0169339 [Google Scholar]
  28. H. A. Barton, M. R. Taylor, N. R. Pace, Geomicrobiol. J., 2004, 21, (1), 11 LINK https://doi.org/10.1080/01490450490253428 [Google Scholar]
  29. M. K. Chelius, J. C. Moore, Geomicrobiol. J., 2004, 21, (2), 123 LINK https://doi.org/10.1080/01490450490266389 [Google Scholar]
  30. S. Yücel, M. Yamaç, Pak. J. Pharm. Sci., 2010, 23, (1), 1 LINK https://www.pjps.pk/wp-content/uploads/pdfs/CD-PJPS-23-1-10/Paper-1.pdf [Google Scholar]
  31. B. H. Velikonja, R. Tkavc, L. Pašić, Int. J. Speleol., 2014, 43, (1), 45 LINK http://dx.doi.org/10.5038/1827-806X.43.1.5 [Google Scholar]
  32. N. Doğruöz-Güngör, B. Çandıroğlu, G. Altuğ, J. Caves Karst Stud., 2020, 82, (2), 106 LINK https://doi.org/10.4311/2019MB0107 [Google Scholar]
  33. I. Tomova, I. Lazarkevich, A. Tomova, M. Kambourova, E. Vasileva-Tonkova, Int. J. Speleol., 2013, 42, (1), 65 LINK https://dx.doi.org/10.5038/1827-806X.42.1.8 [Google Scholar]
  34. J. P. Zhou, Y. Q. Gu, C. S. Zou, M. H. Mo, J. Microbiol., 2007, 45, (2), 105 [Google Scholar]
  35. H. A. Barton, V. Jurado, Microbe, 2007, 2, 132 [Google Scholar]
  36. V. Jurado, E. Porca, S. Cuezva, A. Fernandez-Cortes, S. Sanches-Moral, C. Saiz-Jimenez, Sci. Total Environ., 2010, 408, (17), 3632 LINK https://doi.org/10.1016/j.scitotenv.2010.04.057 [Google Scholar]
  37. K. Tomczyk-Żak, U. Zielenkiewicz, Geomicrobiol J., 2016, 33, (1), 20 LINK https://doi.org/10.1080/01490451.2014.1003341 [Google Scholar]
  38. M. Yasir, Braz. J. Microbiol., 2018, 49, (2), 248 LINK https://doi.org/10.1016/j.bjm.2017.08.005 [Google Scholar]
  39. V. Ivanova, I. Tomova, A. Kamburov, A. Tomova, E. Vasileva-Tonkova, M. Kambourova, J. Caves Karst Stud., 2013, 75, (3), 218 LINK https://dx.doi.org/10.4311/2012MB0279 [Google Scholar]
  40. C. Schabereiter-Gurtner, C. Saiz-Jimenez, G. Piñar, W. Lubitz, S. Rölleke, FEMS Microbiol. Lett., 2002, 211, 7 LINK https://doi.org/10.1111/j.1574-6968.2002.tb11195.x [Google Scholar]
  41. R. Rautela, S. Rawat, R. Rawat, P. Verma, A. B. Bhatt, Environ. Conserv. J., 2017, 18, (3), 115 LINK https://doi.org/10.36953/ECJ.2017.18315 [Google Scholar]
  42. S. Kalkan, G. Altuğ, Environ. Monit. Assess., 2020, 192, (6), 356 LINK https://doi.org/10.1007/s10661-020-08310-5 [Google Scholar]
  43. R. E. Thompson, X. Liu, J. Ripoll-Rozada, N. Alonso-García, B. L. Parker, P. J. B. Pereira, R. J. Payne, Nature Chem., 2017, 9, (9), 909 LINK https://doi.org/10.1038/nchem.2744 [Google Scholar]
  44. N. K. Lee, J. Y. Hong, S. H. Yi, S. P. Hong, J. E. Lee, H. D. Paik, J. Funct. Foods, 2019, 58, 324 LINK https://doi.org/10.1016/j.jff.2019.04.059 [Google Scholar]
  45. R. K. Ganguly, S. K. Chakraborty, J. Environ. Health Sci. Eng., 2018, 16, (2), 205 LINK https://doi.org/10.1007/s40201-018-0308-4 [Google Scholar]
  46. E. Papamanoli, N. Tzanetakis, E. Litopoulou-Tzanetaki, P. Kotzekidou, Meat Sci., 2003, 65, (2), 859 LINK https://doi.org/10.1016/S0309-1740(02)00292-9 [Google Scholar]
  47. J. R. Xavier, K. V. Ramana, R. K. Sharma, J. Food Biochem., 2018, 42, (5), e12564 LINK https://doi.org/10.1111/jfbc.12564 [Google Scholar]
  48. A. Sharma, Shadiya, T. Sharma, R. Kumar, K. Meena, S. S. Kanwar, ‘Biodiesel and the Potential Role of Microbial Lipases in Its Production’, in “Microbial Technology for the Welfare of Society: Microorganisms for Sustainability”, ed. P. K. Arora, Vol. 17, Springer Nature Singapore Pte Ltd, Singapore, 2019, pp. 83–89 LINK https://doi.org/10.1007/978-981-13-8844-6_4 [Google Scholar]
  49. J. A. Avguštin, P. Petrič, L. Pašić, Int. J. Speleol., 2019, 48, (3), 295 LINK https://doi.org/10.5038/1827-806X.48.3.2272 [Google Scholar]
  50. K. Lavoie, T. Ruhumbika, A. Bawa, A. Whitney, J. De Ondarza, Diversity, 2017, 9, (4), 42 LINK https://doi.org/10.3390/d9040042 [Google Scholar]
  51. M. K. Gibson, B. Wang, S. Ahmadi, C.-A. D. Burnham, P. I. Tarr, B. B. Warner, G. Dantas, Nature Microbiol., 2016, 1, (4), 16024 LINK https://doi.org/10.1038/nmicrobiol.2016.24 [Google Scholar]
  52. A. C. Pawlowski, W. Wang, K. Koteva, H. A. Barton, A. G. McArthur, G. D. Wright, Nature Commun., 2016, 7, 13803 LINK https://doi.org/10.1038/ncomms13803 [Google Scholar]
/content/journals/10.1595/205651320X15923194903811
Loading
/content/journals/10.1595/205651320X15923194903811
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test