Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

Since cave ecosystems have extraordinary environmental conditions, these ecosystems offer opportunities for microbiological studies. In this study, cultivable bacteria isolated from Parsık cave, Turkey, were investigated regarding enzyme profiles, antibiotic resistance and potential for production of antimicrobial agents. The metabolic properties of 321 bacterial isolates were determined. The most produced enzyme by the isolates was found to be tyrosine arylamidase. The enzymatic reactions of the bacteria showed that Parsık cave isolates have high aminopeptidase activity. The highest antibiotic resistance frequency of the isolates was 38.6% against ampicillin. While the isolates displayed variable inhibition rates against tested pathogenic microorganisms, they showed the highest inhibition against The results show that the bacteria isolated from Parsık cave have potential for further studies related to biotechnological applications. The study findings contribute increased knowledge on metabolic peculiarities of bacteria isolated from cave ecosystems.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15923194903811
2020-01-01
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Candiroglu_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15923194903811&mimeType=html&fmt=ahah

References

  1. Schabereiter-Gurtner C., Saiz-Jimenez C., Piñar G., Lubitz W., and Rölleke S. FEMS Microbiol. Ecol., 2004, 47, (2), 235 LINK https://doi.org/10.1016/S0168-6496(03)00280-0 [Google Scholar]
  2. Barton H. A. J. Caves Karst Stud., 2006, 68, (2), 43 LINK https://caves.org/pub/journal/PDF/V68/v68n2-Barton.pdf [Google Scholar]
  3. Kelly L. C., Cockell C. S., Herrera-Belaroussi A., Piceno Y., Andersen G., DeSantis T., Brodie E., Thorsteinsson T., Marteinsson V., Poly F., and LeRoux X. Microb. Ecol., 2011, 62, (1), 69 LINK https://doi.org/10.1007/s00248-011-9864-1 [Google Scholar]
  4. Cuezva S., Fernandez-Cortes A., Porca E., Pašić L., Jurado V., Hernandez-Marine M., Serrano-Ortiz P., Hermosin B., Cañaveras J. C., Sanchez-Moral S., and Saiz-Jimenez C. FEMS Microbiol. Ecol., 2012, 81, (1), 281 LINK https://doi.org/10.1111/j.1574-6941.2012.01391.x [Google Scholar]
  5. Rusznyák A., Akob D. M., Nietzsche S., Eusterhues K., Totsche K. U., Neu T. R., Frosch T., Popp J., Keiner R., Geletneky J., Katzschmann L., Schulze E.-D., and Küsel K. Appl. Environ. Microbiol., 2012, 78, (4), 1157 LINK https://doi.org/10.1128/AEM.06568-11 [Google Scholar]
  6. Jamil S. U. U., Zada S., Khan I., Sajjad W., Rafiq M., Shah A. A., and Hasan F. J. Caves Karst Stud., 2017, 79, (1), 73 LINK https://caves.org/pub/journal/PDF/V79/cave-79-01-73.pdf [Google Scholar]
  7. Dhami N. K., Quirin M. E. C., and Mukherjee A. Ecol. Eng., 2017, 103, (A), 106 LINK https://doi.org/10.1016/j.ecoleng.2017.03.007 [Google Scholar]
  8. Nugroho A., Sumarno A., Ngeljaratan L. N., Zulfiana D., Krishanti N. P. R. A., Triastutil T., and Widodo E. J. Kim. Terap. Indones., 2019, 21, (1), 7 LINK https://inajac.lipi.go.id/index.php/InaJAC/article/view/411/483 [Google Scholar]
  9. Elmanama A. A., and Alhour M. T. J. Adv. Sci. Eng. Res., 2013, 3, (4), 388 LINK http://www.sign-ific-ance.co.uk/index.php/JASER/article/view/313 [Google Scholar]
  10. Krishnapriya S., Venkatesh Babu D. L., and Prince Arulraj G. Microbiol Res., 2015, 174, 48 LINK https://doi.org/10.1016/j.micres.2015.03.009 [Google Scholar]
  11. Omoregie A. I. ‘Isolation, Identification and Characterisation of Urease-Producing Bacteria from Limestone Caves of Sarawak’, in ‘Characterization of Ureolytic Bacteria Isolated from Limestone Caves of Sarawak and Evaluation of their Efficiency in Biocementation’, Master of Science (Research) Thesis, Chapter 2, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Melbourne, Australia, 2016, pp 41–92 [Google Scholar]
  12. Mondal S., Palit D., ‘Effective Role of Microorganism in Waste Management and Environmental Sustainability’, in “Sustainable Agriculture, Forest and Environmental Management”, Eds. Jhariya M. K., Banerjee A., Meena R. S., and Yadav D. K. Springer Nature Singapore Pte Ltd, Singapore, 2019, pp 485–515 LINK https://doi.org/10.1007/978-981-13-6830-1_14 [Google Scholar]
  13. Gerday C., Aittaleb M., Bentahir M., Chessa J. P., Claverie P., Collins T., D’Amico S., Dumont J., Garsoux G., Georlette D., Hoyoux A., Lonhienne T., Meuwis M.-A., and Feller G. Trends Biotechnol., 2000, 18, (3), 103 LINK https://doi.org/10.1016/S0167-7799(99)01413-4 [Google Scholar]
  14. Cabeza M. S., Baca F. L., Puntes E. M., Loto F., Baigorí M. D., and Morata V. I. Food Technol. Biotech., 2011, 49, (2), 187 LINK https://hrcak.srce.hr/69458 [Google Scholar]
  15. Kmietowicz Z. Brit. Med. J., 2017, 358, j4430 LINK https://doi.org/10.1136/bmj.j4430 [Google Scholar]
  16. Herold K., Gollmick F. A., Groth I., Roth M., Menzel K.-D., Möllmann U., Gräfe U., and Hertweck C. Chem. Eur. J., 2005, 11, (19), 5523 LINK https://doi.org/10.1002/chem.200590060 [Google Scholar]
  17. Jiang Z., Guo L., Chen C., Liu S., Zhang L., Dai S., He Q., You X., Hu X., Tuo L., Jiang W., and Sun C. J. Antibiot., 2015, 68, (12), 771 LINK https://doi.org/10.1038/ja.2015.70 [Google Scholar]
  18. Derewacz D. K., McNees C. R., Scalmani G., Covington C. L., Shanmugam G., Marnett L. J., Polavarapu P. L., and Bachmann B. O. J. Nat. Prod., 2014, 77, (8), 1759 LINK https://doi.org/10.1021/np400742p [Google Scholar]
  19. D’Costa V. M., King C. E., Kalan L., Morar M., Sung W. W. L., Schwartz C., Froese D., Zazula G., Calmels F., Debruyne R., Golding G. B., Poinar H. N., and Wright G. D. Nature, 2011, 477, (7365), 457 LINK https://doi.org/10.1038/nature10388 [Google Scholar]
  20. Nodwell J. R. J. Bacteriol., 2007, 189, (10), 3683 LINK https://doi.org/10.1128/JB.00356-07 [Google Scholar]
  21. Massa S., Caruso M., Trovatelli F., and Tosques M. World J. Microbiol. Biotechnol., 1998, 14, (5), 727 LINK https://doi.org/10.1023/A:1008893627877 [Google Scholar]
  22. Doğruöz Güngör N., Şanlı Yürüdü N. Ö., “The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs”, ed. and Méndez-Vilas A. Vol. 5, Formatex, Badajoz, Spain, 2015, pp 923–929 [Google Scholar]
  23. Pincus D. H., ‘Microbial Identification Using the bioMérieux VITEK® 2 System’, in “Encyclopedia of Rapid Microbiological Methods”, ed. and Miller M. J. Parenteral Drug Association, Bethesda, USA, 2006, pp 1–32 [Google Scholar]
  24. Ritchie K. B., Schwarz M., Mueller J., Lapacek V. A., Merselis D., Walsh C. J., and Luer C. A. Front. Microbiol., 2017, 8, 1050 LINK https://doi.org/10.3389/fmicb.2017.01050 [Google Scholar]
  25. Ferraro M. J., Wikler M. A., Craig W. A., Dudley M. N., Eliopoulos G. M., Hecht D. W., Hindler J., Barth Reller L., Sheldon A. T., Swenson J. M., Tenover F. C., Testa R. T., and Weinstein M. P. ‘Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard’, 8th Edn., M2-A8, Vol. 23, No. 1, National Committee for Clinical Laboratory Standards (NCCLS), Wayne, USA, 2003, 63 pp [Google Scholar]
  26. Leuko S., Koskinen K., Sanna L., D’Angeli I. M., De Waele J., Marcia P., Moissl-Eichinger C., and Rettberg P. PLoS One, 2017, 12, (7), e0180700 LINK https://doi.org/10.1371/journal.pone.0180700 [Google Scholar]
  27. Lavoie K. H., Winter A. S., Read K. J. H., Hughes E. M., Spilde M. N., and Northup D. E. PloS One, 2017, 12, (2), e0169339 LINK https://doi.org/10.1371/journal.pone.0169339 [Google Scholar]
  28. Barton H. A., Taylor M. R., and Pace N. R. Geomicrobiol. J., 2004, 21, (1), 11 LINK https://doi.org/10.1080/01490450490253428 [Google Scholar]
  29. Chelius M. K., and Moore J. C. Geomicrobiol. J., 2004, 21, (2), 123 LINK https://doi.org/10.1080/01490450490266389 [Google Scholar]
  30. Yücel S., and Yamaç M. Pak. J. Pharm. Sci., 2010, 23, (1), 1 LINK https://www.pjps.pk/wp-content/uploads/pdfs/CD-PJPS-23-1-10/Paper-1.pdf [Google Scholar]
  31. Velikonja B. H., Tkavc R., and Pašić L. Int. J. Speleol., 2014, 43, (1), 45 LINK http://dx.doi.org/10.5038/1827-806X.43.1.5 [Google Scholar]
  32. Doğruöz-Güngör N., Çandıroğlu B., and Altuğ G. J. Caves Karst Stud., 2020, 82, (2), 106 LINK https://doi.org/10.4311/2019MB0107 [Google Scholar]
  33. Tomova I., Lazarkevich I., Tomova A., Kambourova M., and Vasileva-Tonkova E. Int. J. Speleol., 2013, 42, (1), 65 LINK https://dx.doi.org/10.5038/1827-806X.42.1.8 [Google Scholar]
  34. Zhou J. P., Gu Y. Q., Zou C. S., and Mo M. H. J. Microbiol., 2007, 45, (2), 105 [Google Scholar]
  35. Barton H. A., and Jurado V. Microbe, 2007, 2, 132 [Google Scholar]
  36. Jurado V., Porca E., Cuezva S., Fernandez-Cortes A., Sanches-Moral S., and Saiz-Jimenez C. Sci. Total Environ., 2010, 408, (17), 3632 LINK https://doi.org/10.1016/j.scitotenv.2010.04.057 [Google Scholar]
  37. Tomczyk-Żak K., and Zielenkiewicz U. Geomicrobiol J., 2016, 33, (1), 20 LINK https://doi.org/10.1080/01490451.2014.1003341 [Google Scholar]
  38. Yasir M. Braz. J. Microbiol., 2018, 49, (2), 248 LINK https://doi.org/10.1016/j.bjm.2017.08.005 [Google Scholar]
  39. Ivanova V., Tomova I., Kamburov A., Tomova A., Vasileva-Tonkova E., and Kambourova M. J. Caves Karst Stud., 2013, 75, (3), 218 LINK https://dx.doi.org/10.4311/2012MB0279 [Google Scholar]
  40. Schabereiter-Gurtner C., Saiz-Jimenez C., Piñar G., Lubitz W., and Rölleke S. FEMS Microbiol. Lett., 2002, 211, 7 LINK https://doi.org/10.1111/j.1574-6968.2002.tb11195.x [Google Scholar]
  41. Rautela R., Rawat S., Rawat R., Verma P., and Bhatt A. B. Environ. Conserv. J., 2017, 18, (3), 115 LINK https://doi.org/10.36953/ECJ.2017.18315 [Google Scholar]
  42. Kalkan S., and Altuğ G. Environ. Monit. Assess., 2020, 192, (6), 356 LINK https://doi.org/10.1007/s10661-020-08310-5 [Google Scholar]
  43. Thompson R. E., Liu X., Ripoll-Rozada J., Alonso-García N., Parker B. L., Pereira P. J. B., and Payne R. J. Nature Chem., 2017, 9, (9), 909 LINK https://doi.org/10.1038/nchem.2744 [Google Scholar]
  44. Lee N. K., Hong J. Y., Yi S. H., Hong S. P., Lee J. E., and Paik H. D. J. Funct. Foods, 2019, 58, 324 LINK https://doi.org/10.1016/j.jff.2019.04.059 [Google Scholar]
  45. Ganguly R. K., and Chakraborty S. K. J. Environ. Health Sci. Eng., 2018, 16, (2), 205 LINK https://doi.org/10.1007/s40201-018-0308-4 [Google Scholar]
  46. Papamanoli E., Tzanetakis N., Litopoulou-Tzanetaki E., and Kotzekidou P. Meat Sci., 2003, 65, (2), 859 LINK https://doi.org/10.1016/S0309-1740(02)00292-9 [Google Scholar]
  47. Xavier J. R., Ramana K. V., and Sharma R. K. J. Food Biochem., 2018, 42, (5), e12564 LINK https://doi.org/10.1111/jfbc.12564 [Google Scholar]
  48. Sharma A., Shadiya, Sharma T., Kumar R., Meena K., Kanwar S. S., ‘Biodiesel and the Potential Role of Microbial Lipases in Its Production’, in “Microbial Technology for the Welfare of Society: Microorganisms for Sustainability”, ed. and Arora P. K. Vol. 17, Springer Nature Singapore Pte Ltd, Singapore, 2019, pp. 83–89 LINK https://doi.org/10.1007/978-981-13-8844-6_4 [Google Scholar]
  49. Avguštin J. A., Petrič P., and Pašić L. Int. J. Speleol., 2019, 48, (3), 295 LINK https://doi.org/10.5038/1827-806X.48.3.2272 [Google Scholar]
  50. Lavoie K., Ruhumbika T., Bawa A., Whitney A., and De Ondarza J. Diversity, 2017, 9, (4), 42 LINK https://doi.org/10.3390/d9040042 [Google Scholar]
  51. Gibson M. K., Wang B., Ahmadi S., Burnham C.-A. D., Tarr P. I., Warner B. B., and Dantas G. Nature Microbiol., 2016, 1, (4), 16024 LINK https://doi.org/10.1038/nmicrobiol.2016.24 [Google Scholar]
  52. Pawlowski A. C., Wang W., Koteva K., Barton H. A., McArthur A. G., and Wright G. D. Nature Commun., 2016, 7, 13803 LINK https://doi.org/10.1038/ncomms13803 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15923194903811
Loading
/content/journals/10.1595/205651320X15923194903811
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error