Skip to content
Volume 64, Issue 4
  • ISSN: 2056-5135


Since cave ecosystems have extraordinary environmental conditions, these ecosystems offer opportunities for microbiological studies. In this study, cultivable bacteria isolated from Parsık cave, Turkey, were investigated regarding enzyme profiles, antibiotic resistance and potential for production of antimicrobial agents. The metabolic properties of 321 bacterial isolates were determined. The most produced enzyme by the isolates was found to be tyrosine arylamidase. The enzymatic reactions of the bacteria showed that Parsık cave isolates have high aminopeptidase activity. The highest antibiotic resistance frequency of the isolates was 38.6% against ampicillin. While the isolates displayed variable inhibition rates against tested pathogenic microorganisms, they showed the highest inhibition against The results show that the bacteria isolated from Parsık cave have potential for further studies related to biotechnological applications. The study findings contribute increased knowledge on metabolic peculiarities of bacteria isolated from cave ecosystems.


Article metrics loading...

Loading full text...

Full text loading...



  1. Schabereiter-Gurtner C., Saiz-Jimenez C., Piñar G., Lubitz W., and Rölleke S. FEMS Microbiol. Ecol., 2004, 47, (2), 235 LINK [Google Scholar]
  2. Barton H. A. J. Caves Karst Stud., 2006, 68, (2), 43 LINK [Google Scholar]
  3. Kelly L. C., Cockell C. S., Herrera-Belaroussi A., Piceno Y., Andersen G., DeSantis T., Brodie E., Thorsteinsson T., Marteinsson V., Poly F., and LeRoux X. Microb. Ecol., 2011, 62, (1), 69 LINK [Google Scholar]
  4. Cuezva S., Fernandez-Cortes A., Porca E., Pašić L., Jurado V., Hernandez-Marine M., Serrano-Ortiz P., Hermosin B., Cañaveras J. C., Sanchez-Moral S., and Saiz-Jimenez C. FEMS Microbiol. Ecol., 2012, 81, (1), 281 LINK [Google Scholar]
  5. Rusznyák A., Akob D. M., Nietzsche S., Eusterhues K., Totsche K. U., Neu T. R., Frosch T., Popp J., Keiner R., Geletneky J., Katzschmann L., Schulze E.-D., and Küsel K. Appl. Environ. Microbiol., 2012, 78, (4), 1157 LINK [Google Scholar]
  6. Jamil S. U. U., Zada S., Khan I., Sajjad W., Rafiq M., Shah A. A., and Hasan F. J. Caves Karst Stud., 2017, 79, (1), 73 LINK [Google Scholar]
  7. Dhami N. K., Quirin M. E. C., and Mukherjee A. Ecol. Eng., 2017, 103, (A), 106 LINK [Google Scholar]
  8. Nugroho A., Sumarno A., Ngeljaratan L. N., Zulfiana D., Krishanti N. P. R. A., Triastutil T., and Widodo E. J. Kim. Terap. Indones., 2019, 21, (1), 7 LINK [Google Scholar]
  9. Elmanama A. A., and Alhour M. T. J. Adv. Sci. Eng. Res., 2013, 3, (4), 388 LINK [Google Scholar]
  10. Krishnapriya S., Venkatesh Babu D. L., and Prince Arulraj G. Microbiol Res., 2015, 174, 48 LINK [Google Scholar]
  11. Omoregie A. I. ‘Isolation, Identification and Characterisation of Urease-Producing Bacteria from Limestone Caves of Sarawak’, in ‘Characterization of Ureolytic Bacteria Isolated from Limestone Caves of Sarawak and Evaluation of their Efficiency in Biocementation’, Master of Science (Research) Thesis, Chapter 2, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Melbourne, Australia, 2016, pp 41–92 [Google Scholar]
  12. Mondal S., Palit D., ‘Effective Role of Microorganism in Waste Management and Environmental Sustainability’, in “Sustainable Agriculture, Forest and Environmental Management”, Eds. Jhariya M. K., Banerjee A., Meena R. S., and Yadav D. K. Springer Nature Singapore Pte Ltd, Singapore, 2019, pp 485–515 LINK [Google Scholar]
  13. Gerday C., Aittaleb M., Bentahir M., Chessa J. P., Claverie P., Collins T., D’Amico S., Dumont J., Garsoux G., Georlette D., Hoyoux A., Lonhienne T., Meuwis M.-A., and Feller G. Trends Biotechnol., 2000, 18, (3), 103 LINK [Google Scholar]
  14. Cabeza M. S., Baca F. L., Puntes E. M., Loto F., Baigorí M. D., and Morata V. I. Food Technol. Biotech., 2011, 49, (2), 187 LINK [Google Scholar]
  15. Kmietowicz Z. Brit. Med. J., 2017, 358, j4430 LINK [Google Scholar]
  16. Herold K., Gollmick F. A., Groth I., Roth M., Menzel K.-D., Möllmann U., Gräfe U., and Hertweck C. Chem. Eur. J., 2005, 11, (19), 5523 LINK [Google Scholar]
  17. Jiang Z., Guo L., Chen C., Liu S., Zhang L., Dai S., He Q., You X., Hu X., Tuo L., Jiang W., and Sun C. J. Antibiot., 2015, 68, (12), 771 LINK [Google Scholar]
  18. Derewacz D. K., McNees C. R., Scalmani G., Covington C. L., Shanmugam G., Marnett L. J., Polavarapu P. L., and Bachmann B. O. J. Nat. Prod., 2014, 77, (8), 1759 LINK [Google Scholar]
  19. D’Costa V. M., King C. E., Kalan L., Morar M., Sung W. W. L., Schwartz C., Froese D., Zazula G., Calmels F., Debruyne R., Golding G. B., Poinar H. N., and Wright G. D. Nature, 2011, 477, (7365), 457 LINK [Google Scholar]
  20. Nodwell J. R. J. Bacteriol., 2007, 189, (10), 3683 LINK [Google Scholar]
  21. Massa S., Caruso M., Trovatelli F., and Tosques M. World J. Microbiol. Biotechnol., 1998, 14, (5), 727 LINK [Google Scholar]
  22. Doğruöz Güngör N., Şanlı Yürüdü N. Ö., “The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs”, ed. and Méndez-Vilas A. Vol. 5, Formatex, Badajoz, Spain, 2015, pp 923–929 [Google Scholar]
  23. Pincus D. H., ‘Microbial Identification Using the bioMérieux VITEK® 2 System’, in “Encyclopedia of Rapid Microbiological Methods”, ed. and Miller M. J. Parenteral Drug Association, Bethesda, USA, 2006, pp 1–32 [Google Scholar]
  24. Ritchie K. B., Schwarz M., Mueller J., Lapacek V. A., Merselis D., Walsh C. J., and Luer C. A. Front. Microbiol., 2017, 8, 1050 LINK [Google Scholar]
  25. Ferraro M. J., Wikler M. A., Craig W. A., Dudley M. N., Eliopoulos G. M., Hecht D. W., Hindler J., Barth Reller L., Sheldon A. T., Swenson J. M., Tenover F. C., Testa R. T., and Weinstein M. P. ‘Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard’, 8th Edn., M2-A8, Vol. 23, No. 1, National Committee for Clinical Laboratory Standards (NCCLS), Wayne, USA, 2003, 63 pp [Google Scholar]
  26. Leuko S., Koskinen K., Sanna L., D’Angeli I. M., De Waele J., Marcia P., Moissl-Eichinger C., and Rettberg P. PLoS One, 2017, 12, (7), e0180700 LINK [Google Scholar]
  27. Lavoie K. H., Winter A. S., Read K. J. H., Hughes E. M., Spilde M. N., and Northup D. E. PloS One, 2017, 12, (2), e0169339 LINK [Google Scholar]
  28. Barton H. A., Taylor M. R., and Pace N. R. Geomicrobiol. J., 2004, 21, (1), 11 LINK [Google Scholar]
  29. Chelius M. K., and Moore J. C. Geomicrobiol. J., 2004, 21, (2), 123 LINK [Google Scholar]
  30. Yücel S., and Yamaç M. Pak. J. Pharm. Sci., 2010, 23, (1), 1 LINK [Google Scholar]
  31. Velikonja B. H., Tkavc R., and Pašić L. Int. J. Speleol., 2014, 43, (1), 45 LINK [Google Scholar]
  32. Doğruöz-Güngör N., Çandıroğlu B., and Altuğ G. J. Caves Karst Stud., 2020, 82, (2), 106 LINK [Google Scholar]
  33. Tomova I., Lazarkevich I., Tomova A., Kambourova M., and Vasileva-Tonkova E. Int. J. Speleol., 2013, 42, (1), 65 LINK [Google Scholar]
  34. Zhou J. P., Gu Y. Q., Zou C. S., and Mo M. H. J. Microbiol., 2007, 45, (2), 105 [Google Scholar]
  35. Barton H. A., and Jurado V. Microbe, 2007, 2, 132 [Google Scholar]
  36. Jurado V., Porca E., Cuezva S., Fernandez-Cortes A., Sanches-Moral S., and Saiz-Jimenez C. Sci. Total Environ., 2010, 408, (17), 3632 LINK [Google Scholar]
  37. Tomczyk-Żak K., and Zielenkiewicz U. Geomicrobiol J., 2016, 33, (1), 20 LINK [Google Scholar]
  38. Yasir M. Braz. J. Microbiol., 2018, 49, (2), 248 LINK [Google Scholar]
  39. Ivanova V., Tomova I., Kamburov A., Tomova A., Vasileva-Tonkova E., and Kambourova M. J. Caves Karst Stud., 2013, 75, (3), 218 LINK [Google Scholar]
  40. Schabereiter-Gurtner C., Saiz-Jimenez C., Piñar G., Lubitz W., and Rölleke S. FEMS Microbiol. Lett., 2002, 211, 7 LINK [Google Scholar]
  41. Rautela R., Rawat S., Rawat R., Verma P., and Bhatt A. B. Environ. Conserv. J., 2017, 18, (3), 115 LINK [Google Scholar]
  42. Kalkan S., and Altuğ G. Environ. Monit. Assess., 2020, 192, (6), 356 LINK [Google Scholar]
  43. Thompson R. E., Liu X., Ripoll-Rozada J., Alonso-García N., Parker B. L., Pereira P. J. B., and Payne R. J. Nature Chem., 2017, 9, (9), 909 LINK [Google Scholar]
  44. Lee N. K., Hong J. Y., Yi S. H., Hong S. P., Lee J. E., and Paik H. D. J. Funct. Foods, 2019, 58, 324 LINK [Google Scholar]
  45. Ganguly R. K., and Chakraborty S. K. J. Environ. Health Sci. Eng., 2018, 16, (2), 205 LINK [Google Scholar]
  46. Papamanoli E., Tzanetakis N., Litopoulou-Tzanetaki E., and Kotzekidou P. Meat Sci., 2003, 65, (2), 859 LINK [Google Scholar]
  47. Xavier J. R., Ramana K. V., and Sharma R. K. J. Food Biochem., 2018, 42, (5), e12564 LINK [Google Scholar]
  48. Sharma A., Shadiya, Sharma T., Kumar R., Meena K., Kanwar S. S., ‘Biodiesel and the Potential Role of Microbial Lipases in Its Production’, in “Microbial Technology for the Welfare of Society: Microorganisms for Sustainability”, ed. and Arora P. K. Vol. 17, Springer Nature Singapore Pte Ltd, Singapore, 2019, pp. 83–89 LINK [Google Scholar]
  49. Avguštin J. A., Petrič P., and Pašić L. Int. J. Speleol., 2019, 48, (3), 295 LINK [Google Scholar]
  50. Lavoie K., Ruhumbika T., Bawa A., Whitney A., and De Ondarza J. Diversity, 2017, 9, (4), 42 LINK [Google Scholar]
  51. Gibson M. K., Wang B., Ahmadi S., Burnham C.-A. D., Tarr P. I., Warner B. B., and Dantas G. Nature Microbiol., 2016, 1, (4), 16024 LINK [Google Scholar]
  52. Pawlowski A. C., Wang W., Koteva K., Barton H. A., McArthur A. G., and Wright G. D. Nature Commun., 2016, 7, 13803 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error