Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

The manufacturing industry must diverge from a ‘take, make and waste’ linear production paradigm towards more circular economies. Truly sustainable, circular economies are intrinsically tied to renewable resource flows, where vast quantities need to be available at a central point of consumption. Abundant, renewable carbon feedstocks are often structurally complex and recalcitrant, requiring costly pretreatment to harness their potential fully. As such, the heat integration of supercritical water gasification (SCWG) and aerobic gas fermentation unlocks the promise of renewable feedstocks such as lignin. This study models the technoeconomics and life cycle assessment (LCA) for the sustainable production of the commodity chemicals, isopropanol and acetone, from gasified Kraft black liquor. The investment case is underpinned by rigorous process modelling informed by published continuous gas fermentation experimental data. Time series analyses support the price forecasts for the solvent products. Furthermore, a Monte Carlo simulation frames an uncertain boundary for the technoeconomic model. The technoeconomic assessment (TEA) demonstrates that production of commodity chemicals priced at ~US$1000 per tonne is within reach of aerobic gas fermentation. In addition, owing to the sequestration of biogenic carbon into the solvent products, negative greenhouse gas (GHG) emissions are achieved within a cradle-to-gate LCA framework. As such, the heat integrated aerobic gas fermentation platform has promise as a best-in-class technology for the production of a broad spectrum of renewable commodity chemicals.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16137377305390
2021-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Conradie_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16137377305390&mimeType=html&fmt=ahah

References

  1. Naik S. N., Goud V. V., Rout P. K., and Dalai A. K. Renew. Sustain. Energy Rev., 2010, 14, (2), 578 LINK https://doi.org/10.1016/j.rser.2009.10.003 [Google Scholar]
  2. Liguori R., and Faraco V. Bioresour. Technol., 2016, 215, 13 LINK https://doi.org/10.1016/j.biortech.2016.04.054 [Google Scholar]
  3. Sun Y., and Cheng J. Bioresour. Technol., 2002, 83, (1), 1 LINK https://doi.org/10.1016/S0960-8524(01)00212-7 [Google Scholar]
  4. Naqvi M., Yan J., and Dahlquist E. Bioresour. Technol., 2010, 101, (21), 8001 LINK https://doi.org/10.1016/j.biortech.2010.05.013 [Google Scholar]
  5. Suhr M., Klein G., Kourti I., Gonzalo M. R., Santonja G. G., Roudier S., and Sancho L. D. “Best Available Techniques (BAT) Reference Document for the Production of Pulp, Paper and Board”,JRC Science and Policy Reports, European Union, Luxembourg, 2015, 906 pp LINK https://doi.org/10.2791/370629 [Google Scholar]
  6. Keshtkar M., Ammara R., Perrier M., and Paris J. J. Sci. Technol. Forest Prod. Proc., 2015, 5, (1), 24 LINK https://www.paperadvance.com/images/stories/documents/technical-papers/J-FOR+Vol5-No1-Thermal%20Energy%20Efficiency%20Analysis.pdf [Google Scholar]
  7. Ahmetović E., Kravanja Z., Ibrić N., and Grossmann I. E. ‘A Review of Recent Developments of Water and Energy Optimisation Methods Applied to Kraft Pulp and Paper Mills’,4th South East European Conference on Sustainable Development of Energy, Water and Environment Systems, 28th June–2nd July, 2020, Sarajevo, Bosnia and Herzegovina, Sustainable Development of Energy, Water and Environment Systems (SDEWES), Zagreb, Croatia, 2020 LINK http://egon.cheme.cmu.edu/Papers/Ahmetovic_et_al_2020_4th_SEE_SDEWES_Sarajevo_B&H_Final_ Revision_Final.pdf [Google Scholar]
  8. Berntsson T., Axegård P., Backlund B., Samuelsson Å., Berglin N., and Lindgren K. “Swedish Pulp Mill Biorefineries: A Vision of Future Possibilities”,The Swedish Energy Agency, Stockholm, Sweden, 2008, 84 pp LINK https://www.osti.gov/etdeweb/servlets/purl/951488 [Google Scholar]
  9. Yoshida Y., Dowaki K., Matsumura Y., Matsuhashi R., Li D., Ishitani H., and Komiyama H. Biomass Bioenergy, 2003, 25, (3), 257 LINK https://doi.org/10.1016/S0961-9534(03)00016-3 [Google Scholar]
  10. Kumar M., Oyedun A. O., and Kumar A. Renew. Sustain. Energy Rev., 2018, 81, (2), 1742 LINK https://doi.org/10.1016/j.rser.2017.05.270 [Google Scholar]
  11. Kruse A. J. Supercrit. Fluids, 2009, 47, (3), 391 LINK https://doi.org/10.1016/j.supflu.2008.10.009 [Google Scholar]
  12. ‘BP and Johnson Matthey License Innovative Waste-to-Fuels Technology to Biofuels Producer Fulcrum BioEnergy’,bp Plc, London, UK, 25th September, 2018, 4 pp LINK https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-and-johnson-matthey-license-innovative-waste-to-fuels-technology-to-biofuels-producer-fulcrum-bioenergy.html [Google Scholar]
  13. Mohammadi M., Najafpour G. D., Younesi H., Lahijani P., Uzir M. H., and Mohamed A. R. Renew. Sustain. Energy Rev., 2011, 15, (9), 4255 LINK https://doi.org/10.1016/j.rser.2011.07.124 [Google Scholar]
  14. Daniell J., Köpke M., and Simpson S. D. Energies, 2012, 5, (12), 5372 LINK https://doi.org/10.3390/en5125372 [Google Scholar]
  15. ‘World’s First Commercial Waste Gas to Ethanol Plant Starts Up’,LanzaTech Inc, Skokie, USA, 8th June, 2018 LINK https://www.lanzatech.com/2018/06/08/worlds-first-commercial-waste-gas-ethanol-plant-starts [Google Scholar]
  16. Fast A. G., and Papoutsakis E. T. Curr. Opin. Chem. Eng., 2012, 1, (4), 380 LINK https://doi.org/10.1016/j.coche.2012.07.005 [Google Scholar]
  17. Molitor B., Marcellin E., and Angenent L. T. Curr. Opin. Chem. Biol., 2017, 41, 84 LINK https://doi.org/10.1016/j.cbpa.2017.10.003 [Google Scholar]
  18. Humphreys C. M., and Minton N. P. Curr. Opin. Biotechnol., 2018, 50, 174 LINK https://doi.org/10.1016/j.copbio.2017.12.023 [Google Scholar]
  19. Takors R., Kopf M., Mampel J., Bluemke W., Blombach B., Eikmanns B., Bengelsdorf F. R., Weuster-Botz D., and Dürre P. Microb. Biotechnol., 2018, 11, (4), 606 LINK https://doi.org/10.1111/1751-7915.13270 [Google Scholar]
  20. Bar-Even A., Flamholz A., Noor E., and Milo R. Biochim. Biophys. Acta – Bioenerg., 2012, 1817, (9), 1646 LINK https://doi.org/10.1016/j.bbabio.2012.05.002 [Google Scholar]
  21. Humbird D., Davis R., and McMillan J. D. Biochem. Eng. J., 2017, 127, 161 LINK https://doi.org/10.1016/j.bej.2017.08.006 [Google Scholar]
  22. Van Brunt J. Nat. Biotechnol., 1986, 4, 395 LINK https://doi.org/10.1038/nbt0586-395 [Google Scholar]
  23. McMillan J. D., and Beckham G. T. Microb. Biotechnol., 2017, 10, (1), 40 LINK https://doi.org/10.1111/1751-7915.12471 [Google Scholar]
  24. Dheskali E., Koutinas A. A., and Kookos I. K. Biochem. Eng. J., 2020, 154, 107462 LINK https://doi.org/10.1016/j.bej.2019.107462 [Google Scholar]
  25. Gunukula S., Runge T., and Anex R. ACS Sustain. Chem. Eng., 2017, 5, (9), 8119 LINK https://doi.org/10.1021/acssuschemeng.7b01729 [Google Scholar]
  26. Davis R., Tao L., Tan E. C. D., Biddy M. J., Beckham G. T., Scarlata C., Jacobson J., Cafferty K., Ross J., Lukas J., Knorr D., and Schoen P. “Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons”,Technical Report NREL/TP-5100-60223, National Renewable Energy Laboratory, Golden, USA, October, 2013, 147 pp LINK https://doi.org/10.2172/1107470 [Google Scholar]
  27. Humbird D., Davis R., Tao L., Kinchin C., Hsu D., Aden A., Schoen P., Lukas J., Olthof B., Worley M., Sexton D., and Dudgeon D. “Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover”,Technical Report, NREL/TP-5100-47764, National Renewable Energy Laboratory, Golden, USA, May, 2011, 147 pp LINK https://doi.org/10.2172/1013269 [Google Scholar]
  28. Bommareddy R. R., Wang Y., Pearcy N., Hayes M., Lester E., Minton N. P., and Conradie A. V. iScience, 2020, 23, (6), 101218 LINK https://doi.org/10.1016/j.isci.2020.101218 [Google Scholar]
  29. Dürre P., and Eikmanns B. J. Curr. Opin. Biotechnol., 2015, 35, 63 LINK https://doi.org/10.1016/j.copbio.2015.03.008 [Google Scholar]
  30. Cardoso M., Domingos de Oliveira É., and Passos M. L. Fuel, 2009, 88, (4), 756 LINK https://doi.org/10.1016/j.fuel.2008.10.016 [Google Scholar]
  31. Schubert M., Regler J. W., and Vogel F. J. Supercrit. Fluids, 2010, 52, (1), 99 LINK https://doi.org/10.1016/j.supflu.2009.10.002 [Google Scholar]
  32. Cao C., Guo L., Jin H., Guo S., Lu Y., and Zhang X. Int. J. Hydrogen Energy, 2013, 38, (30), 13293 LINK https://doi.org/10.1016/j.ijhydene.2013.07.068 [Google Scholar]
  33. Magdeldin M., and Järvinen M. Appl. Energy, 2020, 262, 114558 LINK https://doi.org/10.1016/j.apenergy.2020.114558 [Google Scholar]
  34. Odu S. O., van der Ham A. G. J., Metz S., and Kersten S. R. A. Ind. Eng. Chem. Res., 2015, 54, (20), 5527 LINK https://doi.org/10.1021/acs.iecr.5b00826 [Google Scholar]
  35. van Wyk S., van der Ham A. G. J., and Kersten S. R. A. Desalination, 2020, 474, 114189 LINK https://doi.org/10.1016/j.desal.2019.114189 [Google Scholar]
  36. Hu Y., Gong M., Xing X., Wang H., Zeng Y., and Xu C. C. Renew. Sustain. Energy Rev., 2020, 118, 109529 LINK https://doi.org/10.1016/j.rser.2019.109529 [Google Scholar]
  37. Okolie J. A., Rana R., Nanda S., Dalai A. K., and Kozinski J. A. Sustain. Energy Fuels, 2019, 3, (3), 578 LINK https://doi.org/10.1039/c8se00565f [Google Scholar]
  38. Gmehling J., Menke J., Krafczyk J., Fischer K., Fontaine J.-C., Kehiaian H. V., ‘Azeotropic Data For Binary Mixtures’, in “CRC Handbook of Chemistry and Physics”, ed. and Rumble J. R. 101st Edn., CRC Press, Boca Raton, USA, 2020, 1572 pp. [Google Scholar]
  39. Pienaar C., Schwarz C. E., Knoetze J. H., and Burger A. J. J. Chem. Eng. Data, 2013, 58,(3), 537 LINK https://doi.org/10.1021/je300847v [Google Scholar]
  40. Luyben W. L., and Chien I.-L. ‘Isopropanol–Water (Cyclohexane as the Entrainer)’, in “Design and Control of Distillation Systems for Separating Azeotropes”, Part 3, Ch. 8, John Wiley & Sons Inc, Hoboken, USA, 2010, pp. 219–244 LINK https://doi.org/10.1002/9780470575802.ch8 [Google Scholar]
  41. Cui Y., Shi X., Guang C., Zhang Z., Wang C., and Wang C. Process Saf. Environ. Prot., 2019, 122, 1 LINK https://doi.org/10.1016/j.psep.2018.11.017 [Google Scholar]
  42. Petersen L. A. H., Villadsen J., Jørgensen S. B., and Gernaey K. V. Biotechnol. Bioeng., 2017, 114, (2), 344 LINK https://doi.org/10.1002/bit.26084 [Google Scholar]
  43. Larson E. D., Consonni S., Katofsky R. E., Iisa K., and Frederick W. J. “A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry”, Vol. 1, US Department of Energy, Washington, DC, USA,American Forest and Paper Association, Washington, DC, USA, 21st December, 2006, 164 pp LINK https://acee.princeton.edu/wp-content/uploads/2016/10/Princeton-Biorefinery-Study-Final-Report-Vol.-1.pdf [Google Scholar]
  44. Zlochower I. A., and Green G. M. J. Loss Prev. Process Ind., 2009, 22, (4), 499 LINK https://doi.org/10.1016/j.jlp.2009.03.006 [Google Scholar]
  45. Seider W. D., Lewin D. R., Seader J. D., Widago S., Gani R., and Ng K. M. ‘Cost Accounting and Capital Cost Estimation’, in “Product and Process Design Principles: Synthesis, Analysis and Evaluation”, Ch. 16, 4th Edn., John Wiley & Sons Inc, Hoboken, USA, 2017, pp 426–497 [Google Scholar]
  46. Rangaiah G. P. “Multi-Objective Optimization: Techniques and Applications in Chemical Engineering”, Advances in Process Systems Engineering Series, Vol. 1, World Scientific Publishing Co Pte Ltd, Singapore, 2009, 376 pp [Google Scholar]
  47. Towler G., and Sinnott R. K. “Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design”,2nd Edn., Elsevier Ltd, Oxford, UK, 2013, 1303 pp [Google Scholar]
  48. El-Halwagi M. M. “Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement”,2nd Edn., Elsevier Inc, Amsterdam, The Netherlands, 2017, 604 pp LINK https://www.elsevier.com/books/sustainable-design-through-process-integration/el-halwagi/978-0-12-809823-3 [Google Scholar]
  49. Jenkins S. ‘2019 Chemical Engineering Plant Cost Index Annual Average’,Chemical Engineering, New York, USA, 20th March, 2020 LINK https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/ [Google Scholar]
  50. Sinnott R. K. “Chemical Engineering Design”, Coulson & Richardson’s Chemical Engineering Series, 4th Edn., Vol. 6, Butterworth-Heinemann, Oxford, UK, 2005, 1056 pp [Google Scholar]
  51. ‘Ammonia Prices, Markets & Analysis’,Independent Commodity Intelligence Services (ICIS), London, UK:https://www.icis.com/explore/commodities/chemicals/ammonia/ (Accessed on 1st June 2020) [Google Scholar]
  52. Foo D. C. Y., Chemmangattuvalappil N., Ng D. K. S., Elyas R., Chen C.-L., Elms R. D., Lee H.-Y., Chien I.-L., Chong S., and Chong C. H. “Chemical Engineering Process Simulation”,Elsevier Inc, Amsterdam, The Netherlands, 2017, 444 pp [Google Scholar]
  53. Takens F., ‘Detecting Strange Attractors in Turbulence’, Dynamical Systems and Turbulence Symposium, University of Warwick, UK, 1980, Lecture Notes in Mathematics, eds. Dold A, and Eckmann B. Springer-Verlag, Berlin, Germany, 1981, pp. 366–381 LINK https://doi.org/10.1007/bfb0091924 [Google Scholar]
  54. ‘Commodity Price Database’,Intratec Solutions LLC, San Antonio, USA:https://www.intratec.us/products/commodities-prices/petrochemicals-prices (Accessed on 1st June 2020) [Google Scholar]
  55. Leonard J. A., Kramer M. A., and Ungar L. H. Comput. Chem. Eng., 1992, 16, (9), 819 LINK https://doi.org/10.1016/0098-1354(92)80035-8 [Google Scholar]
  56. Ming Z., Ximei L., Na L., and Song X. Renew. Sustain. Energy Rev., 2013, 25, 260 LINK https://doi.org/10.1016/j.rser.2013.04.026 [Google Scholar]
  57. Kinchin C. ‘BETO Biofuels TEA Database’,National Renewable Energy Laboratory, Washington, DC, USA, 2020 LINK https://bioenergykdf.net/content/beto-biofuels-tea-database [Google Scholar]
  58. ‘China to Cut Subsidies for Renewable Power by 30 per Cent to US$807 Million in 2020’,South China Morning Post Ltd, Hong Kong, 20th November, 2019 LINK https://www.scmp.com/news/china/society/article/3038591/china-cut-subsidies-renewable-power-30-cent-us807-million-2020 [Google Scholar]
  59. ‘Environmental Management – Life Cycle Assessment – Principles and Framework’, ISO 14040:2006, International Organization for Standardization, Geneva, Switzerland, July, 2006, 20 pp LINK https://www.iso.org/standard/37456.html [Google Scholar]
  60. ‘Environmental Management – Life Cycle Assessment – Requirements and Guidelines’, ISO 14044:2006, International Organization for Standardization, Geneva, Switzerland, July, 2006, 46 pp LINK https://www.iso.org/standard/38498.html [Google Scholar]
  61. “IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change”, eds. Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P. M. Cambridge University Press, Cambridge, UK, New York, NY, USA, 1535 pp LINK https://doi.org/10.1017/CBO9781107415324 [Google Scholar]
  62. Wernet G., Bauer C., Steubing B., Reinhard J., Moreno-Ruiz E., and Weidema B. Int. J. Life Cycle Assess., 2016, 21, (9), 1218 LINK https://doi.org/10.1007/s11367-016-1087-8 [Google Scholar]
  63. Sun X., Meng F., Liu J., McKechnie J., and Yang J. J. Clean. Prod., 2019, 220, 1 LINK https://doi.org/10.1016/j.jclepro.2019.01.225 [Google Scholar]
  64. ‘Bioenergy Technologies Incubator 2: Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria’,LanzaTech Inc, Skokie, USA, 9th March, 2017 LINK https://www.energy.gov/sites/prod/files/2017/05/f34/Development%20of%20a%20Sustainable%20Green%20Chemistry%20Platform%20for%20Production%20of%20Acetone%20and%20downstream%20drop-in%20fuel%20and%20commodity%20products%20directly%20from%20Biomass%20Syngas.pdf [Google Scholar]
  65. Simpson S. D., Abdalla T., Brown S. D., Canter C., Conrado R., Daniell J., Dassanayke A., Gao A., Jensen R. O., Köpke M., Leang C., Liew F., Nagaraju S., Nogle R., Tappel R. C., Tran L., Charania P., Engle N., Giannone R., Hettich R., Klingeman D., Poudel S., Tschaplinski T., and Yang Z. “Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria”, Final Technical Report, Contract DE-EE0007566, Department of Energy, Washington, DC, USA, 2019, 31 pp LINK https://doi.org/10.2172/1599328 [Google Scholar]
  66. “Multi-Year Program Plan”,Bioenergy Technologies Office, US Department of Energy, Washington, DC, USA, March, 2016, 258 pp LINK https://www.energy.gov/sites/prod/files/2016/03/f30/mypp_beto_march2016_2.pdf [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16137377305390
Loading
/content/journals/10.1595/205651321X16137377305390
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error