Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135
  • oa State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry Synthesis Methods

    Preparation routes for active and durable iridium catalysts

  • Authors: Himanshi Dhawan1, Marc Secanell2 and Natalia Semagina3
  • Affiliations: 1 Department of Chemical and Materials Engineering, University of Alberta12th Floor, Donadeo Innovation Centre for Engineering, 9211 – 116 Street, NW Edmonton, Alberta, T6G 1H9Canada 2 Department of Mechanical Engineering, University of Alberta10-203 Donadeo Innovation Centre for Engineering, 9211 – 116 Street, NW Edmonton, Alberta, T6G 1H9Canada 3 Department of Chemical and Materials Engineering, University of Alberta12th Floor, Donadeo Innovation Centre for Engineering, 9211 – 116 Street, NW Edmonton, Alberta, T6G 1H9Canada
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 2, Apr 2021, p. 247 - 262
  • DOI: https://doi.org/10.1595/205651321X16013966874707
    • Published online: 01 Jan 2021

Abstract

With the increasing demand for clean hydrogen production, both as a fuel and an indispensable reagent for chemical industries, acidic water electrolysis has attracted considerable attention in academic and industrial research. Iridium is a well-accepted active and corrosion-resistant component of catalysts for oxygen evolution reaction (OER). However, its scarcity demands breakthroughs in catalyst preparation technologies to ensure its most efficient utilisation. This minireview focusses on the wet-chemistry synthetic methods of the most active and (potentially) durable iridium catalysts for acidic OER, selected from the recent publications in the open literature. The catalysts are classified by their synthesis methods, with authors’ opinion on their practicality. The review may also guide the selection of the state-of-the-art iridium catalysts for benchmarking purposes.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16013966874707
2021-01-01
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Semagina_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16013966874707&mimeType=html&fmt=ahah

References

  1. C. Vogt, M. Monai, G. J. Kramer, B. M. Weckhuysen, Nat. Catal., 2019, 2, (3), 188 LINK https://doi.org/10.1038/s41929-019-0244-4 [Google Scholar]
  2. S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, P. Millet, Int. J. Hydrogen Energy, 2020, 45, (49), 26036 LINK https://doi.org/10.1016/j.ijhydene.2020.03.109 [Google Scholar]
  3. K. A. Lewinski, D. van der Vliet, S. M. Luopa, ECS Trans., 2015, 69, (17), 893 LINK https://doi.org/10.1149/06917.0893ecst [Google Scholar]
  4. J. Kibsgaard, I. Chorkendorff, Nat. Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  5. “The Future of Hydrogen”, International Energy Agency, Paris, France, June, 2019 LINK https://www.iea.org/reports/the-future-of-hydrogen [Google Scholar]
  6. C. Wang, F. Lan, Z. He, X. Xie, Y. Zhao, H. Hou, L. Guo, V. Murugadoss, H. Liu, Q. Shao, Q. Gao, T. Ding, R. Wei, Z. Guo, ChemSusChem, 2019, 12, (8), 1576 LINK https://doi.org/10.1002/cssc.201802873 [Google Scholar]
  7. H. Jang, J. Lee, J. Energy Chem., 2020, 46, 152 LINK https://doi.org/10.1016/j.jechem.2019.10.026 [Google Scholar]
  8. P. Lettenmeier, J. Majchel, L. Wang, V. A. Saveleva, S. Zafeiratos, E. R. Savinova, J.-J. Gallet, F. Bournel, A. S. Gago, K. A. Friedrich, Chem. Sci., 2018, 9, (14), 3570 LINK https://doi.org/10.1039/c8sc00555a [Google Scholar]
  9. F. Bizzotto, J. Quinson, A. Zana, J. J. K. Kirkensgaard, A. Dworzak, M. Oezaslan, M. Arenz, Catal. Sci. Technol., 2019, 9, (22), 6345 LINK https://doi.org/10.1039/c9cy01728c [Google Scholar]
  10. J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou, W. Sun, Angew. Chem. Int. Ed., 2019, 58, (36), 12540 LINK https://doi.org/10.1002/anie.201907017 [Google Scholar]
  11. S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Solà-Hernandez, C. Beauger, L. Dubau, F. Maillard, ACS Catal., 2020, 10, (13), 7283 LINK https://doi.org/10.1021/acscatal.0c01084 [Google Scholar]
  12. S. M. Alia, S. Shulda, C. Ngo, S. Pylypenko, B. S. Pivovar, ACS Catal., 2018, 8, (3), 2111 LINK https://doi.org/10.1021/acscatal.7b03787 [Google Scholar]
  13. H. Yu, N. Danilovic, Y. Wang, W. Willis, A. Poozhikunnath, L. Bonville, C. Capuano, K. Ayers, R. Maric, Appl. Catal. B Environ., 2018, 239, 133 LINK https://doi.org/10.1016/j.apcatb.2018.07.064 [Google Scholar]
  14. J. M. Roller, M. J. Arellano-Jiménez, R. Jain, H. Yu, C. B. Carter, R. Maric, J. Electrochem. Soc., 2013, 160, (6), F716 LINK https://doi.org/10.1149/2.121306jes [Google Scholar]
  15. M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  16. M. Bernt, A. Hartig-Weiß, M. F. Tovini, H. A. El-Sayed, C. Schramm, J. Schröter, C. Gebauer, H. A. Gasteiger, Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK https://doi.org/10.1002/cite.201900101 [Google Scholar]
  17. M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy, 2017, 37, 136 LINK https://doi.org/10.1016/j.nanoen.2017.05.022 [Google Scholar]
  18. T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2017, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  19. T. Schuler, T. Kimura, T. J. Schmidt, F. N. Büchi, Energy Environ. Sci., 2020, 13, (7), 2153 LINK https://doi.org/10.1039/d0ee00673d [Google Scholar]
  20. O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  21. V. A. Saveleva, L. Wang, D. Teschner, T. Jones, A. S. Gago, K. A. Friedrich, S. Zafeiratos, R. Schlögl, E. R. Savinova, J. Phys. Chem. Lett., 2018, 9, (11), 3154 LINK https://doi.org/10.1021/acs.jpclett.8b00810 [Google Scholar]
  22. S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. Tian Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  23. A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy, 2017, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  24. V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, M. T. Greiner, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, Phys. Chem. Chem. Phys., 2016, 18, (4), 2292 LINK https://doi.org/10.1039/c5cp06997a [Google Scholar]
  25. O. Kasian, S. Geiger, T. Li, J.-P. Grote, K. Schweinar, S. Zhang, C. Scheu, D. Raabe, S. Cherevko, B. Gault, K. J. J. Mayrhofer, Energy Environ. Sci., 2019, 12, (12), 3548 LINK https://doi.org/10.1039/c9ee01872g [Google Scholar]
  26. X. Tan, J. Shen, N. Semagina, M. Secanell, J. Catal., 2019, 371, 57 LINK https://doi.org/10.1016/j.jcat.2019.01.018 [Google Scholar]
  27. T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger, C. Scheu, P. Felfer, D. Raabe, B. Gault, K. J. J. Mayrhofer, Nat. Catal., 2018, 1, (4), 300 LINK https://doi.org/10.1038/s41929-018-0043-3 [Google Scholar]
  28. S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, J. Electrochem. Soc., 2016, 163, (11), F3132 LINK https://doi.org/10.1149/2.0181611jes [Google Scholar]
  29. H.-S. Oh, H. N. Nong, T. Reier, M. Gliech, P. Strasser, Chem. Sci., 2015, 6, (6), 3321 LINK https://doi.org/10.1039/c5sc00518c [Google Scholar]
  30. B. J. Kip, J. Van Grondelle, J. H. A. Martens, R. Prins, Appl. Catal., 1986, 26, 353 LINK https://doi.org/10.1016/S0166-9834(00)82564-6 [Google Scholar]
  31. M. Povia, D. F. Abbott, J. Herranz, A. Heinritz, D. Lebedev, B.-J. Kim, E. Fabbri, A. Patru, J. Kohlbrecher, R. Schäublin, M. Nachtegaal, C. Copéret, T. J. Schmidt, Energy Environ. Sci., 2019, 12, (10), 3038 LINK https://doi.org/10.1039/c9ee01018a [Google Scholar]
  32. E. Özer, C. Spöri, T. Reier, P. Strasser, ChemCatChem, 2017, 9, (4), 597 LINK https://doi.org/10.1002/cctc.201600423 [Google Scholar]
  33. S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K. J. J. Mayrhofer, J. Electroanal. Chem., 2016, 774, 102 LINK https://doi.org/10.1016/j.jelechem.2016.05.015 [Google Scholar]
  34. T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, (8), 1765 LINK https://doi.org/10.1021/cs3003098 [Google Scholar]
  35. A. V. Nikiforov, C. B. Prag, J. Polonský, I. M. Petrushina, E. Christensen, N. J. Bjerrum, ECS Trans., 2012, 41, (42), 115 LINK https://doi.org/10.1149/1.4718004 [Google Scholar]
  36. M. Bernt, H. A. Gasteiger, J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  37. M. Mandal, M. Moore, M. Secanell, ECS Trans., 2019, 92, (8), 757 LINK https://doi.org/10.1149/09208.0757ecst [Google Scholar]
  38. T. Schuler, J. M. Ciccone, B. Krentscher, F. Marone, C. Peter, T. J. Schmidt, F. N. Büchi, Adv. Energy Mater., 2020, 10, (2), 1903216 LINK https://doi.org/10.1002/aenm.201903216 [Google Scholar]
  39. Y.-T. Kim, P. P. Lopes, S.-A. Park, A.-Y. Lee, J. Lim, H. Lee, S. Back, Y. Jung, N. Danilovic, V. Stamenkovic, J. Erlebacher, J. Snyder, N. M. Markovic, Nat. Commun., 2017, 8, 1449 LINK https://doi.org/10.1038/s41467-017-01734-7 [Google Scholar]
  40. Q. Feng, X.-Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, H. Wang, J. Power Sources, 2017, 366, 33 LINK https://doi.org/10.1016/j.jpowsour.2017.09.006 [Google Scholar]
  41. U. Babic, M. Tarik, T. J. Schmidt, L. Gubler, J. Power Sources, 2020, 451, 227778 LINK https://doi.org/10.1016/j.jpowsour.2020.227778 [Google Scholar]
  42. H. Yu, L. Bonville, J. Jankovic, R. Maric, Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  43. S. Martens, L. Asen, G. Ercolano, F. Dionigi, C. Zalitis, A. Hawkins, A. Martinez Bonastre, L. Seidl, A. C. Knoll, J. Sharman, P. Strasser, D. Jones, O. Schneider, J. Power Sources, 2018, 392, 274 LINK https://doi.org/10.1016/j.jpowsour.2018.04.084 [Google Scholar]
  44. S. Geiger, O. Kasian, A. M. Mingers, S. S. Nicley, K. Haenen, K. J. J. Mayrhofer, S. Cherevko, ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  45. F. M. Sapountzi, S. C. Divane, E. I. Papaioannou, S. Souentie, C. G. Vayenas, J. Electroanal. Chem., 2011, 662, (1), 116 LINK https://doi.org/10.1016/j.jelechem.2011.04.005 [Google Scholar]
  46. U. Babic, M. Suermann, F. N. Büchi, L. Gubler, T. J. Schmidt, J. Electrochem. Soc., 2017, 164, (4), F387 LINK https://doi.org/10.1149/2.1441704jes [Google Scholar]
  47. C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, (45), 16977 LINK https://doi.org/10.1021/ja407115p [Google Scholar]
  48. I. Spanos, A. A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, R. Schlögl, ACS Catal., 2017, 7, (6), 3768 LINK https://doi.org/10.1021/acscatal.7b00632 [Google Scholar]
  49. C. Spöri, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, P. Strasser, Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  50. L. B. H.,,Platinum Metals Rev., 1962, 6, (4), 150 LINK https://www.technology.matthey.com/article/6/4/150-152/ [Google Scholar]
  51. R. Adams, R. L. Shriner, J. Am. Chem. Soc., 1923, 45, (9), 2171 LINK https://doi.org/10.1021/ja01662a022 [Google Scholar]
  52. E. Rasten, G. Hagen, R. Tunold, Electrochim. Acta, 2003, 48, (25–26), 3945 LINK https://doi.org/10.1016/j.electacta.2003.04.001 [Google Scholar]
  53. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T. J. Schmidt, Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  54. J. Lim, D. Park, S. S. Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, Adv. Funct. Mater., 2018, 28, (4), 1704796 LINK https://doi.org/10.1002/adfm.201704796 [Google Scholar]
  55. N. Semagina, L. Kiwi-Minsker, Catal. Rev.: Sci. Eng., 51, (2), 2009 LINK https://doi.org/10.1080/01614940802480379 [Google Scholar]
  56. P. T. Witte, P. H. Berben, S. Boland, E. H. Boymans, D. Vogt, J. W. Geus, J. G. Donkervoort, Top. Catal., 2012, 55, 505 LINK https://doi.org/10.1007/s11244-012-9818-y [Google Scholar]
  57. J. Quinson, S. Neumann, T. Wannmacher, L. Kacenauskaite, M. Inaba, J. Bucher, F. Bizzotto, S. B. Simonsen, L. Theil Kuhn, D. Bujak, A. Zana, M. Arenz, S. Kunz, Angew. Chem. Int. Ed., 2018, 57, (38), 12338 LINK https://doi.org/10.1002/anie.201807450 [Google Scholar]
  58. F. Karimi, B. A. Peppley, Electrochim. Acta, 2017, 246, 654 LINK https://doi.org/10.1016/j.electacta.2017.06.048 [Google Scholar]
  59. S. Geiger, O. Kasian, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, Sci. Rep., 2017, 7, 4595 LINK https://doi.org/10.1038/s41598-017-04079-9 [Google Scholar]
  60. G. C. da Silva, S. I. Venturini, S. Zhang, M. Löffler, C. Scheu, K. J. J. Mayrhofer, E. A. Ticianelli, S. Cherevko, ChemElectroChem, 2020, 7, (10), 2330 LINK https://doi.org/10.1002/celc.202000391 [Google Scholar]
  61. H.-S. Oh, H. N. Nong, T. Reier, A. Bergmann, M. Gliech, J. Ferreira de Araújo, E. Willinger, R. Schlögl, D. Teschner, P. Strasser, J. Am. Chem. Soc., 2016, 138, (38), 12552 LINK https://doi.org/10.1021/jacs.6b07199 [Google Scholar]
  62. H.-S. Oh, H. N. Nong, P. Strasser, Adv. Funct. Mater., 2015, 25, (7), 1074 LINK https://doi.org/10.1002/adfm.201401919 [Google Scholar]
  63. C. Massué, V. Pfeifer, X. Huang, J. Noack, A. Tarasov, S. Cap, R. Schlögl, ChemSusChem, 2017, 10, (9), 1943 LINK https://doi.org/10.1002/cssc.201601817 [Google Scholar]
  64. D. Lebedev, C. Copéret, ACS Appl. Energy Mater., 2019, 2, (1), 196 LINK https://doi.org/10.1021/acsaem.8b01724 [Google Scholar]
  65. D. Lebedev, R. E. Ezhov, J. Heras-Domingo, A. Comas-Vives, N. Kaeffer, M. Willinger, X. Solans-Monfort, X. Huang, Y. Pushkar, C. Copéret, ACS Cent. Sci., 2020, 6, (7), 1189 LINK https://doi.org/10.1021/acscentsci.0c00604 [Google Scholar]
  66. M. Ledendecker, S. Geiger, K. Hengge, J. Lim, S. Cherevko, A. M. Mingers, D. Göhl, G. V. Fortunato, D. Jalalpoor, F. Schüth, C. Scheu, K. J. J. Mayrhofer, Nano Res., 2019, 12, (9), 2275 LINK https://doi.org/10.1007/s12274-019-2383-y [Google Scholar]
  67. S. Shi, A. Z. Weber, A. Kusoglu, Electrochim. Acta, 2016, 220, 517 LINK https://doi.org/10.1016/j.electacta.2016.10.096 [Google Scholar]
  68. T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources, 2006, 158, (2), 1222 LINK https://doi.org/10.1016/j.jpowsour.2005.10.043 [Google Scholar]
  69. C. Spöri, P. Briois, H. N. Nong, T. Reier, A. Billard, S. Kühl, D. Teschner, P. Strasser, ACS Catal., 2019, 9, (8), 6653 LINK https://doi.org/10.1021/acscatal.9b00648 [Google Scholar]
  70. H. N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok, T. H. T. Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlögl, T. Jones, P. Strasser, Nat. Catal., 2018, 1, (11), 841 LINK https://doi.org/10.1038/s41929-018-0153-y [Google Scholar]
  71. O. Kasian, S. Geiger, M. Schalenbach, A. M. Mingers, A. Savan, A. Ludwig, S. Cherevko, K. J. J. Mayrhofer, Electrocatalysis, 2018, 9, (2), 139 LINK https://doi.org/10.1007/s12678-017-0394-6 [Google Scholar]
  72. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  73. A. W. Jensen, G. W. Sievers, K. D. Jensen, J. Quinson, J. A. Arminio-Ravelo, V. Brüser, M. Arenz, M. Escudero-Escribano, J. Mater. Chem. A, 2020, 8, (3), 1066 LINK https://doi.org/10.1039/c9ta12796h [Google Scholar]
  74. A. L. Strickler, R. A. Flores, L. A. King, J. K. Nørskov, M. Bajdich, T. F. Jaramillo, ACS Appl. Mater. Interfaces, 2019, 11, (37), 34059 LINK https://doi.org/10.1021/acsami.9b13697 [Google Scholar]
  75. O. Kasian, S. Geiger, P. Stock, G. Polymeros, B. Breitbach, A. Savan, A. Ludwig, S. Cherevko, K. J. J. Mayrhofer, J. Electrochem. Soc., 2016, 163, (11), F3099 LINK https://doi.org/10.1149/2.0131611jes [Google Scholar]
  76. N. Toshima, Pure Appl. Chem., 2000, 72, (1–2), 317 LINK https://doi.org/10.1351/pac200072010317 [Google Scholar]
  77. C. Wang, Y. Sui, G. Xiao, X. Yang, Y. Wei, G. Zou, B. Zou, J. Mater. Chem. A, 2015, 3, (39), 19669 LINK https://doi.org/10.1039/c5ta05384f [Google Scholar]
  78. B. Coq, F. Figueras, J. Mol. Catal. A: Chem., 2001, 173, (1–2), 117 LINK https://doi.org/10.1016/S1381-1169(01)00148-0 [Google Scholar]
  79. H. Ziaei-Azad, N. Semagina, ChemCatChem, 2014, 6, (3), 885 LINK https://doi.org/10.1002/cctc.201300844 [Google Scholar]
  80. F. Tao, M. E. Grass, Y. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron, G. A. Somorjai, Science, 2008, 322, (5903), 932 LINK https://doi.org/10.1126/science.1164170 [Google Scholar]
  81. X. Liu, A. Wang, L. Li, T. Zhang, C.-Y. Mou, J.-F. Lee, J. Catal., 2011, 278, (2), 288 LINK https://doi.org/10.1016/j.jcat.2010.12.016 [Google Scholar]
  82. K. J. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew. Chem. Int. Ed., 2009, 48, (19), 3529 LINK https://doi.org/10.1002/anie.200806209 [Google Scholar]
  83. C. Felix, T. Maiyalagan, S. Pasupathi, B. Bladergroen, V. Linkov, Int. J. Electrochem. Sci., 2012, 7, (12), 12064 LINK http://www.electrochemsci.org/papers/vol7/71212064.pdf [Google Scholar]
  84. A. V. Ruban, H. L. Skriver, J. K. Nørskov, Phys. Rev. B, 1999, 59, (24), 15990 LINK https://doi.org/10.1103/PhysRevB.59.15990 [Google Scholar]
  85. N. Danilovic, R. Subbaraman, K. C. Chang, S. H. Chang, Y. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y. T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed., 2014, 53, (51), 14016 LINK https://doi.org/10.1002/anie.201406455 [Google Scholar]
  86. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, S. Guo, Adv. Mater., 2017, 29, (47), 1703798 LINK https://doi.org/10.1002/adma.201703798 [Google Scholar]
  87. J. Park, Y. J. Sa, H. Baik, T. Kwon, S. H. Joo, K. Lee, ACS Nano, 2017, 11, (6), 5500 LINK https://doi.org/10.1021/acsnano.7b00233 [Google Scholar]
/content/journals/10.1595/205651321X16013966874707
Loading
/content/journals/10.1595/205651321X16013966874707
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test