Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16038755164270
2021-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Yadav_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16038755164270&mimeType=html&fmt=ahah

References

  1. Dao M., Lu L., Asaro R. J., De Hosson J. T. M., and Ma E. Acta Mater., 2007, 55, (12), 4041 LINK https://doi.org/10.1016/j.actamat.2007.01.038 [Google Scholar]
  2. De la Calle I., Menta M., and Séby F. Spectrochim. Acta B: Atom. Spectrosc., 2016, 125, 66LINK https://doi.org/10.1016/j.sab.2016.09.007 [Google Scholar]
  3. Feng X., Wang C., Ma H., Chen Y., Duan G., Zhang P., and Song G. Mod. Phys. Lett. B, 2018, 32, (04), 1850046 LINK https://doi.org/10.1142/s021798491850046x [Google Scholar]
  4. Roselina N. R. N., Azizan A., Hyie K. M., Murad M. C., and Abdullah A. H. Int. J. Mod. Phys. B, 2015, 29, (10n11), 1540006 LINK https://doi.org/10.1142/s0217979215400068 [Google Scholar]
  5. Zaleska-Medynska A., Marchelek M., M., and Grabowska E. Adv. Colloid Interface Sci., 2016, 229, 80 LINK https://doi.org/10.1016/j.cis.2015.12.008 [Google Scholar]
  6. Chen H.-J., Wang Y.-H., Zhang Y.-X., Zhang X.-J., Jiao C.-P., and Zhang H.-J. Mater. Res. Innov., 2017, 22, (5), 267 LINK https://doi.org/10.1080/14328917.2017.1312772 [Google Scholar]
  7. Zhang H., and Toshima N. Appl. Catal. A: Gen., 2012, 447–448, 81 LINK https://doi.org/10.1016/j.apcata.2012.09.040 [Google Scholar]
  8. Peng H., Qi W., Ji W., Li S., and He J. Int. J. Mod. Phys. B, 2017, 31, (07), 1741012 LINK https://doi.org/10.1142/s0217979217410120 [Google Scholar]
  9. Kim D., Resasco J., Yu Y., Asiri A. M., and Yang P. Nat. Commun., 2014, 5, 4948 LINK https://doi.org/10.1038/ncomms5948 [Google Scholar]
  10. Singh S. K., Iizuka Y., and Xu Q. Int. J. Hydrogen Energy, 2011, 36, (18), 11794 LINK https://doi.org/10.1016/j.ijhydene.2011.06.069 [Google Scholar]
  11. Feng Y., Liu H., and Yang J. J. Mater. Chem. A, 2014, 2, (17), 6130 LINK https://doi.org/10.1039/c3ta14121g [Google Scholar]
  12. Azizi-Toupkanloo H., Goharshadi E. K., and Nancarrow P. Adv. Powder Technol., 2014, 25, (2), 801 LINK https://doi.org/10.1016/j.apt.2013.11.015 [Google Scholar]
  13. Kumari M. M., Jacob J., and Philip D. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 137, 185 LINK https://doi.org/10.1016/j.saa.2014.08.079 [Google Scholar]
  14. Popovtzer R., Agrawal A., Kotov N. A., Popovtzer A., Balter J., Carey T. E., and Kopelman R. Nano Lett., 2008, 8, (12), 4593 LINK https://doi.org/10.1021/nl8029114 [Google Scholar]
  15. Huang X., and El-Sayed M. A. Alexandria J. Med., 2011, 47, (1), 1 LINK https://doi.org/10.1016/j.ajme.2011.01.001 [Google Scholar]
  16. Chirico G., Borzenkov M., and Pallavicini P. “Gold Nanostars: Synthesis, Properties and Biomedical Application”,Springer International Publishing, Cham, Switzerland, 2015, 80 pp LINK https://doi.org/10.1007/978-3-319-20768-1 [Google Scholar]
  17. Daniel M.-C., and Astruc D. Chem. Rev., 2004, 104, (1), 293 LINK https://doi.org/10.1021/cr030698 [Google Scholar]
  18. Lee J.-H., Choi S. U. S., Jang S. P., and Lee S. Y. Nanoscale Res. Lett., 2012, 7, 420 LINK https://doi.org/10.1186/1556-276X-7-420 [Google Scholar]
  19. Kim J., Takahashi M., Shimizu T., Shirasawa T., Kajita M., Kanayama A., and Miyamoto Y. Mech. Ageing Dev., 2008, 129, (6), 322 LINK https://doi.org/10.1016/j.mad.2008.02.011 [Google Scholar]
  20. Pedone D., Moglianetti M., De Luca E., Bardi G., and Pompa P. P. Chem. Soc. Rev., 2017, 46, (16), 4951 LINK https://doi.org/10.1039/c7cs00152e [Google Scholar]
  21. Ma L., Ding S.-J., and Yang D.-J. Dalt. Trans., 2018, 47, (47), 16969 LINK https://doi.org/10.1039/c8dt03482f [Google Scholar]
  22. Formaggio D. M. D., de Oliveira Neto X. A., Rodrigues L. D. A., de Andrade V. M., Nunes B. C., Lopes-Ferreira M., Ferreira F. G., Wachesk C. C., Camargo E. R., Conceição K., and Tada D. B. J. Nanoparticle Res., 2019, 21, (11), 244 LINK https://doi.org/10.1007/s11051-019-4683-2 [Google Scholar]
  23. Bian T., Zhang H., Jiang Y., Jin C., Wu J., Yang H., and Yang D. Nano Lett., 2015, 15, (12), 7808 LINK https://doi.org/10.1021/acs.nanolett.5b02960 [Google Scholar]
  24. Bao Z. Y., Lei D. Y., Jiang R., Liu X., Dai J., Wang J., Chan H. L. W., and Tsang Y. H. Nanoscale, 2014, 6, (15), 9063 LINK https://doi.org/10.1039/c4nr00770k [Google Scholar]
  25. Fang C., Zhao G., Zhang Z., Ding Q., Yu N., Cui Z., and Bi T. Chem. Eur. J., 2019, 25, (30), 7351 LINK https://doi.org/10.1002/chem.201900403 [Google Scholar]
  26. Han G.-H., Kim K. Y., Nam H., Kim H., Yoon J., Lee J.-H., Kim H.-K., Ahn J.-P., Lee S. Y., Lee K.-Y., and Yu T. Catalysts, 2020, 10, (6), 650 LINK https://doi.org/10.3390/catal10060650 [Google Scholar]
  27. Lou Z., Fujitsuka M., and Majima T. ACS Nano, 2016, 10, (6), 6299 LINK https://doi.org/10.1021/acsnano.6b02494 [Google Scholar]
  28. Zhang H., and Toshima N. J. Colloid Interface Sci., 2013, 394, 166 LINK https://doi.org/10.1016/j.jcis.2012.11.059 [Google Scholar]
  29. Fernández-Valdés D., Torres-Torres C., Martínez-González C. L., Trejo-Valdez M., Hernández-Gómez L. H., and Torres-Martínez R. J. Nanoparticle Res., 2016, 18, (7), 204 LINK https://doi.org/10.1007/s11051-016-3510-2 [Google Scholar]
  30. Hurtado-Aviles E. A., Torres J. A., Trejo-Valdez M., Torres-SanMiguel C. R., Villalpando I., and Torres-Torres C. Materials, 2019, 12, (11), 1791 LINK https://doi.org/10.3390/ma12111791 [Google Scholar]
  31. Singh D., Kumar A., Bhalla V., and Thakur R. K. Mod. Phys. Lett. B, 2018, 32, (21), 1850248 LINK https://doi.org/10.1142/s0217984918502482 [Google Scholar]
  32. Singh D., Tripathi S., Pandey D. K., Gupta A. K., Singh D. K., and Kumar J. Mod. Phys. Lett. B, 2011, 25, (31), 2377 LINK https://doi.org/10.1142/s0217984911027686 [Google Scholar]
  33. Bhalla V., Kumar R., Tripathy C., and Singh D. Int. J. Mod. Phys. B, 2013, 27, (22), 1350116 LINK https://doi.org/10.1142/s0217979213501166 [Google Scholar]
  34. Nanda A., Tiadi A., Mallik S. K., Giri R., and Nath G. IOP Conf. Ser. Mater. Sci. Eng., 2018, 360, 012064 LINK https://doi.org/10.1088/1757-899x/360/1/012064 [Google Scholar]
  35. Leena M., and Srinivasan S. J. Mol. Liquid., 2015, 206, 103 LINK https://doi.org/10.1016/j.molliq.2015.02.001 [Google Scholar]
  36. Rashin M. N., and Hemalatha J. J. Mol. Liquid., 2014, 197, 257 LINK https://doi.org/10.1016/j.molliq.2014.05.024 [Google Scholar]
  37. Yadav N., Jaiswal A. K., Dey K. K., Yadav V. B., Nath G., Srivastava A. K., and Yadav R. R. Mater. Chem. Phys., 2018, 218, 10 LINK https://doi.org/10.1016/j.matchemphys.2018.07.016 [Google Scholar]
  38. Vaish G., Kripal R., and Kumar L. J. Mater. Sci.: Mater. Electron., 2019, 30, (17), 16518 LINK https://doi.org/10.1007/s10854-019-02028-y [Google Scholar]
  39. Yadav N., Chaudhary P., Dey K. K., Yadav S., Yadav B. C., and Yadav R. R. J. Mater. Sci.: Mater. Electron., 2020, 31, (20), 17843 LINK https://doi.org/10.1007/s10854-020-04338-y [Google Scholar]
  40. García-Merino J. A., Torres-Torres D., Carrillo-Delgado C., Trejo-Valdez M., and Torres-Torres C. Optik, 2019, 182, 443 LINK https://doi.org/10.1016/j.ijleo.2019.01.042 [Google Scholar]
  41. Toma H. E., Zamarion V. M., Toma S. H., and Araki K. J. Braz. Chem. Soc., 2010, 21, (7), 1158 LINK https://doi.org/10.1590/s0103-50532010000700003 [Google Scholar]
  42. Karthikeyan B., and Murugavelu M. Sensors Actuators B: Chem., 2012, 163, (1), 216 LINK https://doi.org/10.1016/j.snb.2012.01.039 [Google Scholar]
  43. Grabowska E., Marchelek M., Klimczuk T., Lisowski W., and Zaleska-Medynska A. J. Mol. Catal. A: Chem., 2016, 424, 241 LINK https://doi.org/10.1016/j.molcata.2016.09.004 [Google Scholar]
  44. Venkatesan P., and Santhanalakshmi J. Langmuir, 2010, 26, (14), 12225 LINK https://doi.org/10.1021/la101088d [Google Scholar]
  45. Mougin, Wilkinson D., Roberts K. J., Jack R., and Kippax P. Powder Technol., 2003, 134, (3), 243 LINK https://doi.org/10.1016/j.powtec.2003.08.051 [Google Scholar]
  46. Sepehrinezhad A., and Toufigh V. Ultrasonics, 2018, 89, 195 LINK https://doi.org/10.1016/j.ultras.2018.05.012 [Google Scholar]
  47. Yadav R. R., Mishra G., Yadawa P. K., Kor S. K., Gupta A. K., Raj B., and Jayakumar T. Ultrasonics, 2008, 48, (6–7), 591 LINK https://doi.org/10.1016/j.ultras.2008.06.008 [Google Scholar]
  48. Abu-Bakr A., Pethrick R. A., and Emery J. Polymer, 1982, 23, (10), 1446 LINK https://doi.org/10.1016/0032-3861(82)90242-7 [Google Scholar]
  49. Awasthi P. University of Allahabad, Old Katra, India, 2005
  50. Kor S. K., Tandon U. S., and Rai G. Phys. Rev. B, 1972, 6, (6), 2195 LINK https://doi.org/10.1103/physrevb.6.2195 [Google Scholar]
  51. Józefczak A., and Skumiel A. J. Phys. Condens. Matter, 2006, 18, (6), 1869 LINK https://doi.org/10.1088/0953-8984/18/6/004 [Google Scholar]
  52. Urick R. J. J. Acoust. Soc. Am., 1948, 20, (3), 283 LINK https://doi.org/10.1121/1.1906373 [Google Scholar]
  53. Biwa S., Watanabe Y., Motogi S., and Ohno N. Ultrasonics, 2004, 43, (1), 5 LINK https://doi.org/10.1016/j.ultras.2004.03.002 [Google Scholar]
  54. Babick F., Hinze F., and Ripperger S. Colloids Surf. A: Physicochem. Eng. Asp., 2000, 172, (1–3), 33 LINK https://doi.org/10.1016/s0927-7757(00)00571-9 [Google Scholar]
  55. Pandey V., Mishra G., Verma S. K., Wan M., and Yadav R. R. Mater. Sci. Appl., 2012, 03, (9), 664 LINK https://doi.org/10.4236/msa.2012.39097 [Google Scholar]
  56. Prasher R., Bhattacharya P., and Phelan P. E. Phys. Rev. Lett., 2005, 94, (2), 025901 LINK https://doi.org/10.1103/physrevlett.94.025901 [Google Scholar]
  57. Kumar D. H., Patel H. E., Kumar V. R. R., Sundararajan T., Pradeep T., and Das S. K. Phys. Rev. Lett., 2004, 93, (14), 144301 LINK https://doi.org/10.1103/physrevlett.93.144301 [Google Scholar]
  58. Parashar R., Wan M., Yadav R. R., Pandey A. C., and Parashar V. Mater. Lett., 2014, 132, 440 LINK https://doi.org/10.1016/j.matlet.2014.06.126 [Google Scholar]
  59. Darling A. S. Platinum Metals Rev., 1962, 6, (3), 106 LINK https://www.technology.matthey.com/article/6/3/106-111/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16038755164270
Loading
/content/journals/10.1595/205651321X16038755164270
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error