Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16038755164270
2021-01-01
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Yadav_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16038755164270&mimeType=html&fmt=ahah

References

  1. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, E. Ma, Acta Mater., 2007, 55, (12), 4041 LINK https://doi.org/10.1016/j.actamat.2007.01.038 [Google Scholar]
  2. I. De la Calle, M. Menta, F. Séby, Spectrochim. Acta B: Atom. Spectrosc., 2016, 125, 66LINK https://doi.org/10.1016/j.sab.2016.09.007 [Google Scholar]
  3. X. Feng, C. Wang, H. Ma, Y. Chen, G. Duan, P. Zhang, G. Song, Mod. Phys. Lett. B, 2018, 32, (04), 1850046 LINK https://doi.org/10.1142/s021798491850046x [Google Scholar]
  4. N. R. N. Roselina, A. Azizan, K. M. Hyie, M. C. Murad, A. H. Abdullah, Int. J. Mod. Phys. B, 2015, 29, (10n11), 1540006 LINK https://doi.org/10.1142/s0217979215400068 [Google Scholar]
  5. A. Zaleska-Medynska, M. Marchelek, M. , E. Grabowska, Adv. Colloid Interface Sci., 2016, 229, 80 LINK https://doi.org/10.1016/j.cis.2015.12.008 [Google Scholar]
  6. H.-J. Chen, Y.-H. Wang, Y.-X. Zhang, X.-J. Zhang, C.-P. Jiao, H.-J. Zhang, Mater. Res. Innov., 2017, 22, (5), 267 LINK https://doi.org/10.1080/14328917.2017.1312772 [Google Scholar]
  7. H. Zhang, N. Toshima, Appl. Catal. A: Gen., 2012, 447–448, 81 LINK https://doi.org/10.1016/j.apcata.2012.09.040 [Google Scholar]
  8. H. Peng, W. Qi, W. Ji, S. Li, J. He, Int. J. Mod. Phys. B, 2017, 31, (07), 1741012 LINK https://doi.org/10.1142/s0217979217410120 [Google Scholar]
  9. D. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Nat. Commun., 2014, 5, 4948 LINK https://doi.org/10.1038/ncomms5948 [Google Scholar]
  10. S. K. Singh, Y. Iizuka, Q. Xu, Int. J. Hydrogen Energy, 2011, 36, (18), 11794 LINK https://doi.org/10.1016/j.ijhydene.2011.06.069 [Google Scholar]
  11. Y. Feng, H. Liu, J. Yang, J. Mater. Chem. A, 2014, 2, (17), 6130 LINK https://doi.org/10.1039/c3ta14121g [Google Scholar]
  12. H. Azizi-Toupkanloo, E. K. Goharshadi, P. Nancarrow, Adv. Powder Technol., 2014, 25, (2), 801 LINK https://doi.org/10.1016/j.apt.2013.11.015 [Google Scholar]
  13. M. M. Kumari, J. Jacob, D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 137, 185 LINK https://doi.org/10.1016/j.saa.2014.08.079 [Google Scholar]
  14. R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, R. Kopelman, Nano Lett., 2008, 8, (12), 4593 LINK https://doi.org/10.1021/nl8029114 [Google Scholar]
  15. X. Huang, M. A. El-Sayed, Alexandria J. Med., 2011, 47, (1), 1 LINK https://doi.org/10.1016/j.ajme.2011.01.001 [Google Scholar]
  16. G. Chirico, M. Borzenkov, P. Pallavicini, “Gold Nanostars: Synthesis, Properties and Biomedical Application”,Springer International Publishing, Cham, Switzerland, 2015, 80 pp LINK https://doi.org/10.1007/978-3-319-20768-1 [Google Scholar]
  17. M.-C. Daniel, D. Astruc, Chem. Rev., 2004, 104, (1), 293 LINK https://doi.org/10.1021/cr030698 [Google Scholar]
  18. J.-H. Lee, S. U. S. Choi, S. P. Jang, S. Y. Lee, Nanoscale Res. Lett., 2012, 7, 420 LINK https://doi.org/10.1186/1556-276X-7-420 [Google Scholar]
  19. J. Kim, M. Takahashi, T. Shimizu, T. Shirasawa, M. Kajita, A. Kanayama, Y. Miyamoto, Mech. Ageing Dev., 2008, 129, (6), 322 LINK https://doi.org/10.1016/j.mad.2008.02.011 [Google Scholar]
  20. D. Pedone, M. Moglianetti, E. De Luca, G. Bardi, P. P. Pompa, Chem. Soc. Rev., 2017, 46, (16), 4951 LINK https://doi.org/10.1039/c7cs00152e [Google Scholar]
  21. L. Ma, S.-J. Ding, D.-J. Yang, Dalt. Trans., 2018, 47, (47), 16969 LINK https://doi.org/10.1039/c8dt03482f [Google Scholar]
  22. D. M. D. Formaggio, X. A. de Oliveira Neto, L. D. A. Rodrigues, V. M. de Andrade, B. C. Nunes, M. Lopes-Ferreira, F. G. Ferreira, C. C. Wachesk, E. R. Camargo, K. Conceição, D. B. Tada, J. Nanoparticle Res., 2019, 21, (11), 244 LINK https://doi.org/10.1007/s11051-019-4683-2 [Google Scholar]
  23. T. Bian, H. Zhang, Y. Jiang, C. Jin, J. Wu, H. Yang, D. Yang, Nano Lett., 2015, 15, (12), 7808 LINK https://doi.org/10.1021/acs.nanolett.5b02960 [Google Scholar]
  24. Z. Y. Bao, D. Y. Lei, R. Jiang, X. Liu, J. Dai, J. Wang, H. L. W. Chan, Y. H. Tsang, Nanoscale, 2014, 6, (15), 9063 LINK https://doi.org/10.1039/c4nr00770k [Google Scholar]
  25. C. Fang, G. Zhao, Z. Zhang, Q. Ding, N. Yu, Z. Cui, T. Bi, Chem. Eur. J., 2019, 25, (30), 7351 LINK https://doi.org/10.1002/chem.201900403 [Google Scholar]
  26. G.-H. Han, K. Y. Kim, H. Nam, H. Kim, J. Yoon, J.-H. Lee, H.-K. Kim, J.-P. Ahn, S. Y. Lee, K.-Y. Lee, T. Yu, Catalysts, 2020, 10, (6), 650 LINK https://doi.org/10.3390/catal10060650 [Google Scholar]
  27. Z. Lou, M. Fujitsuka, T. Majima, ACS Nano, 2016, 10, (6), 6299 LINK https://doi.org/10.1021/acsnano.6b02494 [Google Scholar]
  28. H. Zhang, N. Toshima, J. Colloid Interface Sci., 2013, 394, 166 LINK https://doi.org/10.1016/j.jcis.2012.11.059 [Google Scholar]
  29. D. Fernández-Valdés, C. Torres-Torres, C. L. Martínez-González, M. Trejo-Valdez, L. H. Hernández-Gómez, R. Torres-Martínez, J. Nanoparticle Res., 2016, 18, (7), 204 LINK https://doi.org/10.1007/s11051-016-3510-2 [Google Scholar]
  30. E. A. Hurtado-Aviles, J. A. Torres, M. Trejo-Valdez, C. R. Torres-SanMiguel, I. Villalpando, C. Torres-Torres, Materials, 2019, 12, (11), 1791 LINK https://doi.org/10.3390/ma12111791 [Google Scholar]
  31. D. Singh, A. Kumar, V. Bhalla, R. K. Thakur, Mod. Phys. Lett. B, 2018, 32, (21), 1850248 LINK https://doi.org/10.1142/s0217984918502482 [Google Scholar]
  32. D. Singh, S. Tripathi, D. K. Pandey, A. K. Gupta, D. K. Singh, J. Kumar, Mod. Phys. Lett. B, 2011, 25, (31), 2377 LINK https://doi.org/10.1142/s0217984911027686 [Google Scholar]
  33. V. Bhalla, R. Kumar, C. Tripathy, D. Singh, Int. J. Mod. Phys. B, 2013, 27, (22), 1350116 LINK https://doi.org/10.1142/s0217979213501166 [Google Scholar]
  34. A. Nanda, A. Tiadi, S. K. Mallik, R. Giri, G. Nath, IOP Conf. Ser. Mater. Sci. Eng., 2018, 360, 012064 LINK https://doi.org/10.1088/1757-899x/360/1/012064 [Google Scholar]
  35. M. Leena, S. Srinivasan, J. Mol. Liquid., 2015, 206, 103 LINK https://doi.org/10.1016/j.molliq.2015.02.001 [Google Scholar]
  36. M. N. Rashin, J. Hemalatha, J. Mol. Liquid., 2014, 197, 257 LINK https://doi.org/10.1016/j.molliq.2014.05.024 [Google Scholar]
  37. N. Yadav, A. K. Jaiswal, K. K. Dey, V. B. Yadav, G. Nath, A. K. Srivastava, R. R. Yadav, Mater. Chem. Phys., 2018, 218, 10 LINK https://doi.org/10.1016/j.matchemphys.2018.07.016 [Google Scholar]
  38. G. Vaish, R. Kripal, L. Kumar, J. Mater. Sci.: Mater. Electron., 2019, 30, (17), 16518 LINK https://doi.org/10.1007/s10854-019-02028-y [Google Scholar]
  39. N. Yadav, P. Chaudhary, K. K. Dey, S. Yadav, B. C. Yadav, R. R. Yadav, J. Mater. Sci.: Mater. Electron., 2020, 31, (20), 17843 LINK https://doi.org/10.1007/s10854-020-04338-y [Google Scholar]
  40. J. A. García-Merino, D. Torres-Torres, C. Carrillo-Delgado, M. Trejo-Valdez, C. Torres-Torres, Optik, 2019, 182, 443 LINK https://doi.org/10.1016/j.ijleo.2019.01.042 [Google Scholar]
  41. H. E. Toma, V. M. Zamarion, S. H. Toma, K. Araki, J. Braz. Chem. Soc., 2010, 21, (7), 1158 LINK https://doi.org/10.1590/s0103-50532010000700003 [Google Scholar]
  42. B. Karthikeyan, M. Murugavelu, Sensors Actuators B: Chem., 2012, 163, (1), 216 LINK https://doi.org/10.1016/j.snb.2012.01.039 [Google Scholar]
  43. E. Grabowska, M. Marchelek, T. Klimczuk, W. Lisowski, A. Zaleska-Medynska, J. Mol. Catal. A: Chem., 2016, 424, 241 LINK https://doi.org/10.1016/j.molcata.2016.09.004 [Google Scholar]
  44. P. Venkatesan, J. Santhanalakshmi, Langmuir, 2010, 26, (14), 12225 LINK https://doi.org/10.1021/la101088d [Google Scholar]
  45. Mougin, D. Wilkinson, K. J. Roberts, R. Jack, P. Kippax, Powder Technol., 2003, 134, (3), 243 LINK https://doi.org/10.1016/j.powtec.2003.08.051 [Google Scholar]
  46. A. Sepehrinezhad, V. Toufigh, Ultrasonics, 2018, 89, 195 LINK https://doi.org/10.1016/j.ultras.2018.05.012 [Google Scholar]
  47. R. R. Yadav, G. Mishra, P. K. Yadawa, S. K. Kor, A. K. Gupta, B. Raj, T. Jayakumar, Ultrasonics, 2008, 48, (6–7), 591 LINK https://doi.org/10.1016/j.ultras.2008.06.008 [Google Scholar]
  48. A. Abu-Bakr, R. A. Pethrick, J. Emery, Polymer, 1982, 23, (10), 1446 LINK https://doi.org/10.1016/0032-3861(82)90242-7 [Google Scholar]
  49. P. Awasthi, University of Allahabad, Old Katra, India, 2005
  50. S. K. Kor, U. S. Tandon, G. Rai, Phys. Rev. B, 1972, 6, (6), 2195 LINK https://doi.org/10.1103/physrevb.6.2195 [Google Scholar]
  51. A. Józefczak, A. Skumiel, J. Phys. Condens. Matter, 2006, 18, (6), 1869 LINK https://doi.org/10.1088/0953-8984/18/6/004 [Google Scholar]
  52. R. J. Urick, J. Acoust. Soc. Am., 1948, 20, (3), 283 LINK https://doi.org/10.1121/1.1906373 [Google Scholar]
  53. S. Biwa, Y. Watanabe, S. Motogi, N. Ohno, Ultrasonics, 2004, 43, (1), 5 LINK https://doi.org/10.1016/j.ultras.2004.03.002 [Google Scholar]
  54. F. Babick, F. Hinze, S. Ripperger, Colloids Surf. A: Physicochem. Eng. Asp., 2000, 172, (1–3), 33 LINK https://doi.org/10.1016/s0927-7757(00)00571-9 [Google Scholar]
  55. V. Pandey, G. Mishra, S. K. Verma, M. Wan, R. R. Yadav, Mater. Sci. Appl., 2012, 03, (9), 664 LINK https://doi.org/10.4236/msa.2012.39097 [Google Scholar]
  56. R. Prasher, P. Bhattacharya, P. E. Phelan, Phys. Rev. Lett., 2005, 94, (2), 025901 LINK https://doi.org/10.1103/physrevlett.94.025901 [Google Scholar]
  57. D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, S. K. Das, Phys. Rev. Lett., 2004, 93, (14), 144301 LINK https://doi.org/10.1103/physrevlett.93.144301 [Google Scholar]
  58. R. Parashar, M. Wan, R. R. Yadav, A. C. Pandey, V. Parashar, Mater. Lett., 2014, 132, 440 LINK https://doi.org/10.1016/j.matlet.2014.06.126 [Google Scholar]
  59. A. S. Darling, Platinum Metals Rev., 1962, 6, (3), 106 LINK https://www.technology.matthey.com/article/6/3/106-111/ [Google Scholar]
/content/journals/10.1595/205651321X16038755164270
Loading
/content/journals/10.1595/205651321X16038755164270
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test