Skip to content
Volume 65, Issue 4
  • ISSN: 2056-5135


Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.


Article metrics loading...

Loading full text...

Full text loading...



  1. Dao M., Lu L., Asaro R. J., De Hosson J. T. M., and Ma E. Acta Mater., 2007, 55, (12), 4041 LINK [Google Scholar]
  2. De la Calle I., Menta M., and Séby F. Spectrochim. Acta B: Atom. Spectrosc., 2016, 125, 66LINK [Google Scholar]
  3. Feng X., Wang C., Ma H., Chen Y., Duan G., Zhang P., and Song G. Mod. Phys. Lett. B, 2018, 32, (04), 1850046 LINK [Google Scholar]
  4. Roselina N. R. N., Azizan A., Hyie K. M., Murad M. C., and Abdullah A. H. Int. J. Mod. Phys. B, 2015, 29, (10n11), 1540006 LINK [Google Scholar]
  5. Zaleska-Medynska A., Marchelek M., M., and Grabowska E. Adv. Colloid Interface Sci., 2016, 229, 80 LINK [Google Scholar]
  6. Chen H.-J., Wang Y.-H., Zhang Y.-X., Zhang X.-J., Jiao C.-P., and Zhang H.-J. Mater. Res. Innov., 2017, 22, (5), 267 LINK [Google Scholar]
  7. Zhang H., and Toshima N. Appl. Catal. A: Gen., 2012, 447–448, 81 LINK [Google Scholar]
  8. Peng H., Qi W., Ji W., Li S., and He J. Int. J. Mod. Phys. B, 2017, 31, (07), 1741012 LINK [Google Scholar]
  9. Kim D., Resasco J., Yu Y., Asiri A. M., and Yang P. Nat. Commun., 2014, 5, 4948 LINK [Google Scholar]
  10. Singh S. K., Iizuka Y., and Xu Q. Int. J. Hydrogen Energy, 2011, 36, (18), 11794 LINK [Google Scholar]
  11. Feng Y., Liu H., and Yang J. J. Mater. Chem. A, 2014, 2, (17), 6130 LINK [Google Scholar]
  12. Azizi-Toupkanloo H., Goharshadi E. K., and Nancarrow P. Adv. Powder Technol., 2014, 25, (2), 801 LINK [Google Scholar]
  13. Kumari M. M., Jacob J., and Philip D. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 137, 185 LINK [Google Scholar]
  14. Popovtzer R., Agrawal A., Kotov N. A., Popovtzer A., Balter J., Carey T. E., and Kopelman R. Nano Lett., 2008, 8, (12), 4593 LINK [Google Scholar]
  15. Huang X., and El-Sayed M. A. Alexandria J. Med., 2011, 47, (1), 1 LINK [Google Scholar]
  16. Chirico G., Borzenkov M., and Pallavicini P. “Gold Nanostars: Synthesis, Properties and Biomedical Application”,Springer International Publishing, Cham, Switzerland, 2015, 80 pp LINK [Google Scholar]
  17. Daniel M.-C., and Astruc D. Chem. Rev., 2004, 104, (1), 293 LINK [Google Scholar]
  18. Lee J.-H., Choi S. U. S., Jang S. P., and Lee S. Y. Nanoscale Res. Lett., 2012, 7, 420 LINK [Google Scholar]
  19. Kim J., Takahashi M., Shimizu T., Shirasawa T., Kajita M., Kanayama A., and Miyamoto Y. Mech. Ageing Dev., 2008, 129, (6), 322 LINK [Google Scholar]
  20. Pedone D., Moglianetti M., De Luca E., Bardi G., and Pompa P. P. Chem. Soc. Rev., 2017, 46, (16), 4951 LINK [Google Scholar]
  21. Ma L., Ding S.-J., and Yang D.-J. Dalt. Trans., 2018, 47, (47), 16969 LINK [Google Scholar]
  22. Formaggio D. M. D., de Oliveira Neto X. A., Rodrigues L. D. A., de Andrade V. M., Nunes B. C., Lopes-Ferreira M., Ferreira F. G., Wachesk C. C., Camargo E. R., Conceição K., and Tada D. B. J. Nanoparticle Res., 2019, 21, (11), 244 LINK [Google Scholar]
  23. Bian T., Zhang H., Jiang Y., Jin C., Wu J., Yang H., and Yang D. Nano Lett., 2015, 15, (12), 7808 LINK [Google Scholar]
  24. Bao Z. Y., Lei D. Y., Jiang R., Liu X., Dai J., Wang J., Chan H. L. W., and Tsang Y. H. Nanoscale, 2014, 6, (15), 9063 LINK [Google Scholar]
  25. Fang C., Zhao G., Zhang Z., Ding Q., Yu N., Cui Z., and Bi T. Chem. Eur. J., 2019, 25, (30), 7351 LINK [Google Scholar]
  26. Han G.-H., Kim K. Y., Nam H., Kim H., Yoon J., Lee J.-H., Kim H.-K., Ahn J.-P., Lee S. Y., Lee K.-Y., and Yu T. Catalysts, 2020, 10, (6), 650 LINK [Google Scholar]
  27. Lou Z., Fujitsuka M., and Majima T. ACS Nano, 2016, 10, (6), 6299 LINK [Google Scholar]
  28. Zhang H., and Toshima N. J. Colloid Interface Sci., 2013, 394, 166 LINK [Google Scholar]
  29. Fernández-Valdés D., Torres-Torres C., Martínez-González C. L., Trejo-Valdez M., Hernández-Gómez L. H., and Torres-Martínez R. J. Nanoparticle Res., 2016, 18, (7), 204 LINK [Google Scholar]
  30. Hurtado-Aviles E. A., Torres J. A., Trejo-Valdez M., Torres-SanMiguel C. R., Villalpando I., and Torres-Torres C. Materials, 2019, 12, (11), 1791 LINK [Google Scholar]
  31. Singh D., Kumar A., Bhalla V., and Thakur R. K. Mod. Phys. Lett. B, 2018, 32, (21), 1850248 LINK [Google Scholar]
  32. Singh D., Tripathi S., Pandey D. K., Gupta A. K., Singh D. K., and Kumar J. Mod. Phys. Lett. B, 2011, 25, (31), 2377 LINK [Google Scholar]
  33. Bhalla V., Kumar R., Tripathy C., and Singh D. Int. J. Mod. Phys. B, 2013, 27, (22), 1350116 LINK [Google Scholar]
  34. Nanda A., Tiadi A., Mallik S. K., Giri R., and Nath G. IOP Conf. Ser. Mater. Sci. Eng., 2018, 360, 012064 LINK [Google Scholar]
  35. Leena M., and Srinivasan S. J. Mol. Liquid., 2015, 206, 103 LINK [Google Scholar]
  36. Rashin M. N., and Hemalatha J. J. Mol. Liquid., 2014, 197, 257 LINK [Google Scholar]
  37. Yadav N., Jaiswal A. K., Dey K. K., Yadav V. B., Nath G., Srivastava A. K., and Yadav R. R. Mater. Chem. Phys., 2018, 218, 10 LINK [Google Scholar]
  38. Vaish G., Kripal R., and Kumar L. J. Mater. Sci.: Mater. Electron., 2019, 30, (17), 16518 LINK [Google Scholar]
  39. Yadav N., Chaudhary P., Dey K. K., Yadav S., Yadav B. C., and Yadav R. R. J. Mater. Sci.: Mater. Electron., 2020, 31, (20), 17843 LINK [Google Scholar]
  40. García-Merino J. A., Torres-Torres D., Carrillo-Delgado C., Trejo-Valdez M., and Torres-Torres C. Optik, 2019, 182, 443 LINK [Google Scholar]
  41. Toma H. E., Zamarion V. M., Toma S. H., and Araki K. J. Braz. Chem. Soc., 2010, 21, (7), 1158 LINK [Google Scholar]
  42. Karthikeyan B., and Murugavelu M. Sensors Actuators B: Chem., 2012, 163, (1), 216 LINK [Google Scholar]
  43. Grabowska E., Marchelek M., Klimczuk T., Lisowski W., and Zaleska-Medynska A. J. Mol. Catal. A: Chem., 2016, 424, 241 LINK [Google Scholar]
  44. Venkatesan P., and Santhanalakshmi J. Langmuir, 2010, 26, (14), 12225 LINK [Google Scholar]
  45. Mougin, Wilkinson D., Roberts K. J., Jack R., and Kippax P. Powder Technol., 2003, 134, (3), 243 LINK [Google Scholar]
  46. Sepehrinezhad A., and Toufigh V. Ultrasonics, 2018, 89, 195 LINK [Google Scholar]
  47. Yadav R. R., Mishra G., Yadawa P. K., Kor S. K., Gupta A. K., Raj B., and Jayakumar T. Ultrasonics, 2008, 48, (6–7), 591 LINK [Google Scholar]
  48. Abu-Bakr A., Pethrick R. A., and Emery J. Polymer, 1982, 23, (10), 1446 LINK [Google Scholar]
  49. Awasthi P. University of Allahabad, Old Katra, India, 2005
  50. Kor S. K., Tandon U. S., and Rai G. Phys. Rev. B, 1972, 6, (6), 2195 LINK [Google Scholar]
  51. Józefczak A., and Skumiel A. J. Phys. Condens. Matter, 2006, 18, (6), 1869 LINK [Google Scholar]
  52. Urick R. J. J. Acoust. Soc. Am., 1948, 20, (3), 283 LINK [Google Scholar]
  53. Biwa S., Watanabe Y., Motogi S., and Ohno N. Ultrasonics, 2004, 43, (1), 5 LINK [Google Scholar]
  54. Babick F., Hinze F., and Ripperger S. Colloids Surf. A: Physicochem. Eng. Asp., 2000, 172, (1–3), 33 LINK [Google Scholar]
  55. Pandey V., Mishra G., Verma S. K., Wan M., and Yadav R. R. Mater. Sci. Appl., 2012, 03, (9), 664 LINK [Google Scholar]
  56. Prasher R., Bhattacharya P., and Phelan P. E. Phys. Rev. Lett., 2005, 94, (2), 025901 LINK [Google Scholar]
  57. Kumar D. H., Patel H. E., Kumar V. R. R., Sundararajan T., Pradeep T., and Das S. K. Phys. Rev. Lett., 2004, 93, (14), 144301 LINK [Google Scholar]
  58. Parashar R., Wan M., Yadav R. R., Pandey A. C., and Parashar V. Mater. Lett., 2014, 132, 440 LINK [Google Scholar]
  59. Darling A. S. Platinum Metals Rev., 1962, 6, (3), 106 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error