Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

For the metals used in jewellery, high hardness and the associated scratch resistance are much sought after. Conventional crystalline alloys for jewellery are alloyed and extensively processed (thermally and mechanically) to improve hardness, but it is difficult to reach values beyond 300 HV. The advent of bulk metallic glasses (BMGs), based on precious metals and with hardness exceeding 300 HV in the as-cast state, is therefore of great interest for both jewellery and watchmaking. The non-crystalline structure of these materials not only gives high hardness, but also the opportunity to shape metals like plastics, thermoplastic forming (TPF). For more traditional jewellery manufacture, BMGs also exhibit high-definition and near-net-shape casting. Gold-based alloys have long dominated the consideration of BMGs for jewellery as they can comply with 18 karat hallmarks. Although BMGs based on platinum or palladium possess excellent thermoplastic formability and are without known tarnishing problems, achieving useful glass-forming ability (GFA) within the more restrictive hallmarking standards typically used for jewellery (≥95 wt% platinum or palladium) is at best challenging. In this two-part review, platinum- and palladium-based BMGs are discussed, focusing on their potential application in jewellery and on the further research that is necessary.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16045078967011
2021-01-01
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Houghton_16a_Imp-Part_I.html?itemId=/content/journals/10.1595/205651321X16045078967011&mimeType=html&fmt=ahah

References

  1. Turnbull D. Contemp. Phys., 1969, 10, (5), 473 LINK https://doi.org/10.1080/00107516908204405 [Google Scholar]
  2. Jun W. K., Willens R. H., and Duwez P. Nature, 1960, 187, (4740), 869 LINK https://doi.org/10.1038/187869b0 [Google Scholar]
  3. Klotz U. E., and Eisenbart M. ‘Gold-Based Bulk Metallic Glasses: Hard like Steel, Moldable like Plastics’, The 13th Santa Fe Symposium, 17th–20th May, 2013, Albuquerque, USA, 16 pp LINK http://www.santafesymposium.org/2013-santa-fe-symposium-papers/2013-gold-based-bulk-metallic-glasses-hard-like-steel-moldable-like-plastics [Google Scholar]
  4. Lohwongwatana B., Schroers J., and Johnson W. L. ‘Liquidmetal – Hard 18K and .850Pt Alloys that can be Processed like Plastics or Blown Like Glass’, The 13th Santa Fe Symposium, 20th–23rd May 2007, Albuquerque, USA, pp. 289–303 LINK http://www.santafesymposium.org/2007-santa-fe-symposium-papers/2007-liquid-metal-hard-18k-and-850pt-alloys-that-can-be-processed-like-plasticsor-blown-like-glass [Google Scholar]
  5. Schroers J., Lohwongwatana B., Johnson W. L., and Peker A. Appl. Phys. Lett., 2005, 87, (6), 061912 LINK https://doi.org/10.1063/1.2008374 [Google Scholar]
  6. Schroers J., Pham Q., Peker A., Paton N., and Curtis R. V. Scr. Mater., 2007, 57, (4), 341 LINK https://doi.org/10.1016/j.scriptamat.2007.04.033 [Google Scholar]
  7. Martinez R., Kumar G., and Schroers J. Scr. Mater., 2008, 59, (2), 187 LINK https://doi.org/10.1016/j.scriptamat.2008.03.008 [Google Scholar]
  8. Corti C. W. ‘The Role of Hardness in Jewelry Alloys’, The 22nd Santa Fe Symposium, 18th–21st May 2008, Albuquerque, USA, pp. 103120 LINK http://www.santafesymposium.org/2008-santa-fe-symposium-papers/2008-the-role-of-hardness-in-jewelry-alloys [Google Scholar]
  9. Yi H.-B., Wang W.-H., and Samwer K. Mater. Today, 2013, 16, (5), 183 LINK https://doi.org/10.1016/j.mattod.2013.05.002 [Google Scholar]
  10. Gallino I., and Busch R. J. Miner. Metals Mater. Soc., 2017, 69, (11), 2171 LINK https://doi.org/10.1007/s11837-017-2573-6 [Google Scholar]
  11. Kazemi H., Cattin C., Blank M., and Weber L. J. Alloys Compd., 2017, 695, 3419 LINK https://doi.org/10.1016/j.jallcom.2016.12.017 [Google Scholar]
  12. Schroers J. Adv. Mater., 2010, 22, (14), 1566 LINK https://doi.org/10.1002/adma.200902776 [Google Scholar]
  13. Schroers J. Acta Mater., 2008, 56,(3), 471 LINK https://doi.org/10.1016/j.actamat.2007.10.008 [Google Scholar]
  14. Schroers J. J. Miner. Metals Mater. Soc., 2005, 57, (5), 35 LINK https://doi.org/10.1007/s11837-005-0093-2 [Google Scholar]
  15. Chen H. S., and Turnbull D. Acta Metall., 1969, 17, (8), 1021 LINK https://doi.org/10.1016/0001-6160(69)90048-0 [Google Scholar]
  16. Kui H. W., Greer A. L., and Turnbull D. Appl. Phys. Lett., 1984, 45, (6), 615 LINK https://doi.org/10.1063/1.95330 [Google Scholar]
  17. Houghton O. S., and Greer A. L. Johnson Matthey Technol. Rev., 2021, 65, (4), 519 LINK https://www.technology.matthey.com/article/65/4/519-534/ [Google Scholar]
  18. Inoue A., Zhang T., and Masumoto T. Mater. Trans., JIM, 1990, 31, (3), 177 LINK https://doi.org/10.2320/matertrans1989.31.177 [Google Scholar]
  19. Peker A., and Johnson W. L. Appl. Phys. Lett., 1993, 63, (17), 2342 LINK https://doi.org/10.1063/1.110520 [Google Scholar]
  20. Nishiyama N., Takenaka K., Miura H., Saidoh N., Zeng Y., and Inoue A. Intermetallics, 2012, 30, 19 LINK https://doi.org/10.1016/j.intermet.2012.03.020 [Google Scholar]
  21. Lou H. B., Wang X. D., Xu F., Ding S. Q., Cao Q. P., Hono K., and Jiang J. Z. Appl. Phys. Lett., 2011, 99, (5), 051910 LINK https://doi.org/10.1063/1.3621862 [Google Scholar]
  22. Tang M. Q., Zhang H. F., Zhu Z. W., Fu H. M., Wang A. M., Li H., and Hu Z. Q. J. Mater. Sci., Technol., 2010, 26, (6), 481 LINK https://doi.org/10.1016/S1005-0302(10)60077-1 [Google Scholar]
  23. Zhang T., Li R., and Pang S. J. Alloys Compd., 2009, 483, (1–2), 60 LINK https://doi.org/10.1016/j.jallcom.2008.07.224 [Google Scholar]
  24. Zhang Q., Zhang W., and Inoue A. Mater. Trans., JIM, 2007, 48, (11), 3031 LINK https://doi.org/10.2320/matertrans.MEP2007201 [Google Scholar]
  25. Zheng Q., and Xu J. J. Appl. Phys., 2007, 102, (11), 113519 LINK https://doi.org/10.1063/1.2821755 [Google Scholar]
  26. Guo F., and Poon S. J. Appl. Phys. Lett., 2003, 83, (13), 2575 LINK https://doi.org/10.1063/1.1614420 [Google Scholar]
  27. Zeng Y., Nishiyama N., Yamamoto T., and Inoue A. Mater. Trans., JIM, 2009, 50, (10), 2441 LINK https://doi.org/10.2320/matertrans.MRA2008453 [Google Scholar]
  28. Schroers J., and Johnson W. L. Appl. Phys. Lett., 2004, 84, (18), 3666 LINK https://doi.org/10.1063/1.1738945 [Google Scholar]
  29. Zhou Y., Zhao Y., Qu B. Y., Wang L., Zhou R. L., Wu Y. C., and Zhang B. Intermetallics, 2015, 56, 56 LINK https://doi.org/10.1016/j.intermet.2014.09.003 [Google Scholar]
  30. Inoue A., Kong F. L., Man Q. K., Shen B. L., Li R. W., and Al-Marzouki F. J. Alloys Compd., 2014, 615, S2 LINK https://doi.org/10.1016/j.jallcom.2013.11.122 [Google Scholar]
  31. Park E. S., and Kim D. H. J. Mater. Res., 2004, 19, (3), 685 LINK https://doi.org/10.1557/jmr.2004.19.3.685 [Google Scholar]
  32. Senkov O. N., Miracle D. B., Keppens V., and Liaw P. K. Metall. Mater. Trans. A, 2008, 39, (8), 1888 LINK https://doi.org/10.1007/s11661-007-9334-z [Google Scholar]
  33. Zhang T., Yang Q., Ji Y., Li R., Pang S., Wang J., and Xu T. Chin. Sci. Bull., 2011, 56, (36), 3972 LINK https://doi.org/10.1007/s11434-011-4765-8 [Google Scholar]
  34. Inoue A., Zhang T., Takeuchi A., and Zhang W. Mater. Trans., JIM, 1996, 37, (4), 636 LINK https://doi.org/10.2320/matertrans1989.37.636 [Google Scholar]
  35. Zhang L., Ma E., and Xu J. Intermetallics, 2008, 16, (4), 584 LINK https://doi.org/10.1016/j.intermet.2007.12.016 [Google Scholar]
  36. Xu T., Pang S., Li H., and Zhang T. J. Non-Cryst. Solids, 2015, 410, 20 LINK https://doi.org/10.1016/j.jnoncrysol.2014.12.006 [Google Scholar]
  37. Guo H., Zhang W., Qin C., Qiang J., Chen M., and Inoue A. Mater. Trans., JIM, 2009, 50, (6), 1290 LINK https://doi.org/10.2320/matertrans.ME200809 [Google Scholar]
  38. Laws K. J., Shamlaye K. F., and Ferry M. J. Alloys Compd., 2012, 513, 10 LINK https://doi.org/10.1016/j.jallcom.2011.10.097 [Google Scholar]
  39. Wu N. C., Zuo L., Wang J. Q., and Ma E. Acta Mater., 2016, 108, 143 LINK https://doi.org/10.1016/j.actamat.2016.02.012 [Google Scholar]
  40. Corti C. W. ‘Jewellery Alloys – Past, Present and Future’, The Goldsmiths’ Company Jewellery Materials Congress, 8th–9th July, 2019, London, UK, 24 pp LINK https://www.assayofficelondon.co.uk/media/2560/jewellery-alloys-past-present-future-c-corti.pdf [Google Scholar]
  41. Schroers J., Lohwongwatana B., Johnson W. L., and Peker A. Mater. Sci. Eng.: A, 2007, 449–451, 235 LINK https://doi.org/10.1016/j.msea.2006.02.301 [Google Scholar]
  42. Cardinal S., Qiao J., Pelletier J. M., and Kato H. Intermetallics, 2015, 63, 73 LINK https://doi.org/10.1016/j.intermet.2015.04.003 [Google Scholar]
  43. Eisenbart M., Klotz U. E., Busch R., and Gallino I. Corros. Sci., 2014, 85, 258 LINK https://doi.org/10.1016/j.corsci.2014.04.024 [Google Scholar]
  44. Eisenbart M., Klotz U. E., Busch R., and Gallino I. J. Alloys Compd., 2014, 615, (1), S118 LINK https://doi.org/10.1016/j.jallcom.2013.11.167 [Google Scholar]
  45. Rizzi P., Corazzari I., Fiore G., Fenoglio I., Fubini B., Kaciulis S., and Battezzati L. Corros. Sci., 2013, 77, 135 LINK https://doi.org/10.1016/j.corsci.2013.07.036 [Google Scholar]
  46. Dale S. R. Platinum Metals Rev., 1993, 37, (3), 159 LINK https://www.technology.matthey.com/article/37/3/159-164/ [Google Scholar]
  47. Cowley A. ‘Pgm Market Report’, Johnson Matthey, London, UK, May, 2019, 56 pp LINK http://www.platinum.matthey.com/services/market-research/may-2019-pgm-market-report [Google Scholar]
  48. Brelle J., Blatter A., and Ziegenhagen R. Platinum Metals Rev., 2009, 53, (4), 189 LINK https://www.technology.matthey.com/article/53/4/189-197/ [Google Scholar]
  49. Biggs T., Taylor S. S., and Van der Linger E. Platinum Metals Rev., 2005, 49, (1), 2 LINK https://www.technology.matthey.com/article/49/1/2-15/ [Google Scholar]
  50. Ainsley G., Bourne A. A., and Rushforth R. W. E. Platinum Metals Rev., 1978, 22, (3), 78 LINK https://www.technology.matthey.com/article/22/3/78-87/ [Google Scholar]
  51. Mshumi C., and Lang C. Platinum Metals Rev., 2007, 51, (2), 78 LINK https://www.technology.matthey.com/article/51/2/78-82/ [Google Scholar]
  52. Fryé T., and Fischer-Buehner J. ‘Platinum Alloys in the 21st Century: A Comparative Study’, The 25th Santa Fe Symposium, 15th–18th May, 2011, Albuquerque, USA, pp. 201230 LINK http://www.santafesymposium.org/2011-santa-fe-symposium-papers/2011-platinum-alloys-in-the-21st-century-a-comparative-study [Google Scholar]
  53. Battaini P. ‘The Working Properties for Jewelry Fabrication using New Hard 950 Palladium Alloys’, The 20th Santa Fe Symposium, 10th–13th September 2006, Nashville, USA, pp. 1953 LINK http://www.santafesymposium.org/2006-santa-fe-symposium-papers/2006-the-working-properties-for-jewelry-fabrication-using-new-hard-950-palladium-alloys [Google Scholar]
  54. Schneider S. J. Phys.: Condens. Matter, 2001, 13, (34), 7723 LINK https://doi.org/10.1088/0953-8984/13/34/316 [Google Scholar]
  55. Greer A. L. Nature, 1993, 366, (6453), 303 LINK https://doi.org/10.1038/366303a0 [Google Scholar]
  56. Egami T., and Waseda W. J. Non-Cryst. Solids, 1984, 64, (1–2), 113 LINK https://doi.org/10.1016/0022-3093(84)90210-2 [Google Scholar]
  57. Inoue A. Acta Mater., 2000, 48, (1), 279 LINK https://doi.org/10.1016/S1359-6454(99)00300-6 [Google Scholar]
  58. Angell C. A. J. Non-Cryst. Solids, 1991, 131-133, (1), 13 LINK https://doi.org/10.1016/0022-3093(91)90266-9 [Google Scholar]
  59. Takeuchi A., Kato H., and Inoue A. Intermetallics, 2010, 18, (4), 406 LINK https://doi.org/10.1016/j.intermet.2009.08.015 [Google Scholar]
  60. Angell C. A., and Wright G. B. ‘Strong and Fragile Glass Formers’, in “Relaxations in Complex Systems”, eds. Ngai K. L., National Technical Information Service, US Department of Commerce, Springfield, USA, 1985, pp. 311 [Google Scholar]
  61. Senkov O. N. Phys. Rev. B, 2007, 76, (10), 104202 LINK https://doi.org/10.1103/PhysRevB.76.104202 [Google Scholar]
  62. Busch R., Schroers J., and Wang W. H. MRS Bull., 2007, 32, (8), 620 LINK https://doi.org/10.1557/mrs2007.122 [Google Scholar]
  63. Haruyama O., Watanabe T., Yuki K., Horiuchi M., Kato H., and Nishiyama N. Phys. Rev. B, 2011, 83, (6), 064201 LINK https://doi.org/10.1103/PhysRevB.83.064201 [Google Scholar]
  64. Johari G. P., and Goldstein M. J. Chem. Phys., 1970, 53, (6), 2372 LINK https://doi.org/10.1063/1.1674335 [Google Scholar]
  65. Evenson Z., Naleway S. E., Wei S., Gross O., Kruzic J. J., Gallino I., Possart W., Stommel M., and Busch R. Phys. Rev. B, 2014, 89, (17), 174204 LINK https://doi.org/10.1103/PhysRevB.89.174204 [Google Scholar]
  66. Badrinarayanan P., Zheng W., Li Q., and Simon S. L. J. Non-Cryst. Solids, 2007, 353, (26), 2603 LINK https://doi.org/10.1016/j.jnoncrysol.2007.04.025 [Google Scholar]
  67. Inoue A. Mater. Trans., JIM, 1995, 36, (7), 866 LINK https://doi.org/10.2320/matertrans1989.36.866 [Google Scholar]
  68. Leamy H. J., Wang T. T., and Chen H. S. Metall. Mater. Trans. B, 1972, 3, 699 LINK https://doi.org/10.1007/BF02642754 [Google Scholar]
  69. Patterson J. P., and Jones D. R. H. Mater. Res. Bull., 1978, 13, (6), 583 LINK https://doi.org/10.1016/0025-5408(78)90182-4 [Google Scholar]
  70. Spaepen F. Scr. Mater., 2006, 54, (3), 363 LINK https://doi.org/10.1016/j.scriptamat.2005.09.046 [Google Scholar]
  71. Bochtler B., Kruse O., and Busch R. J. Phys. Cond. Matt., 2020, 32, (24), 244002 LINK https://doi.org/10.1088/1361-648X/ab7ad7 [Google Scholar]
  72. Schroers J., and Johnson W. L. Phys. Rev. Lett., 2004, 93, (25), 255506 LINK https://doi.org/10.1103/PhysRevLett.93.255506 [Google Scholar]
  73. Demetriou M. D., Floyd M., Crewdson C., Schramm J. P., Garrett G., and Johnson W. L. Scr. Mater., 2011, 65, (9), 799 LINK https://doi.org/10.1016/j.scriptamat.2011.07.035 [Google Scholar]
  74. Demetriou M. D., Launey M. E., Garrett G., Schramm J. P., Hofmann D. C., Johnson W. L., and Ritchie R. O. Nat. Mater., 2011, 10, (2), 123 LINK https://doi.org/10.1038/nmat2930 [Google Scholar]
  75. Greer A. L. Mater. Today, 2009, 12, (1–2), 14 LINK https://doi.org/10.1016/S1369-7021(09)70037-9 [Google Scholar]
  76. Inoue A., Nishiyama N., and Kimura H. Mater. Trans., JIM, 1997, 38, (2), 179 LINK https://doi.org/10.2320/matertrans1989.38.179 [Google Scholar]
  77. Park C., Saito M., Waseda Y., Nishiyama N., and Inoue A. Mater. Trans., JIM, 1999, 40, (6), 491 LINK https://doi.org/10.2320/matertrans1989.40.491 [Google Scholar]
  78. Qin J., Gu T., Pan S., Bian X., and Zhang T. Sci. China Technol. Sci., 2013, 56, (2), 376 LINK https://doi.org/10.1007/s11431-012-5083-3 [Google Scholar]
  79. Miracle D. B., Sanders W. S., and Senkov O. N. Philos. Mag., 2003, 83, (20), 2409 LINK https://doi.org/10.1080/1478643031000098828 [Google Scholar]
  80. Miracle D. B. J. Non-Cryst. Solids, 2004, 342, (1–3), 89 LINK https://doi.org/10.1016/j.jnoncrysol.2004.05.017 [Google Scholar]
  81. Miracle D. B. Acta Mater., 2006, 54, (16), 4317 LINK https://doi.org/10.1016/j.actamat.2006.06.002 [Google Scholar]
  82. Miracle D. B. J. Non-Cryst. Solids, 2003, 317, (1–2), 40 LINK https://doi.org/10.1016/S0022-3093(02)01981-6 [Google Scholar]
  83. Lu I.-R., Wilde G., Görler G. P., and Willnecker R. J. Non-Cryst. Solids, 1999, 250–252, (2), 577 LINK https://doi.org/10.1016/S0022-3093(99)00135-0 [Google Scholar]
  84. Schroers J., and Johnson W. L. Appl. Phys. Lett., 2000, 77, (8), 1158 LINK https://doi.org/10.1063/1.1289033 [Google Scholar]
  85. Takenaka K., Wada T., Nishiyama N., Kimura H., and Inoue A. Mater. Trans., 2005, 46, (7), 1720 LINK https://doi.org/10.2320/matertrans.46.1720 [Google Scholar]
  86. Liu L., Zhao X., Ma C., Pang S., and Zhang T. J. Non-Cryst. Solids, 2006, 352, (52–54), 5487 LINK https://doi.org/10.1016/j.jnoncrysol.2006.09.025 [Google Scholar]
  87. Legg B. A., Schroers J., and Busch R. Acta Mater., 2007, 55, (3), 1109 LINK https://doi.org/10.1016/j.actamat.2006.09.024 [Google Scholar]
  88. Kazemi H., Cattin C., Hodel G., Pachova T., and Weber L. J. Non-Cryst. Solids, 2017, 460, 66 LINK https://doi.org/10.1016/j.jnoncrysol.2017.01.025 [Google Scholar]
  89. Schroers J., Wu Y., Busch R., and Johnson W. L. Acta Mater., 2001, 49, (14), 2773 LINK https://doi.org/10.1016/S1359-6454(01)00159-8 [Google Scholar]
  90. Nishiyama N., and Inoue A. Mater. Trans., JIM, 1996, 37, (10), 1531 LINK https://doi.org/10.2320/matertrans1989.37.1531 [Google Scholar]
  91. Lu I.-R., Kolbe M., Görler G. P., and Willnecker R. Mater. Sci. Eng.: A, 2004, 375–377, 754 LINK https://doi.org/10.1016/j.msea.2003.10.260 [Google Scholar]
  92. Mauro N. A., Blodgett M., Johnson M. L., Vogt A. J., and Kelton K. F. Nat. Commun., 2014, 5, 4616 LINK https://doi.org/10.1038/ncomms5616 [Google Scholar]
  93. Duan G., Wiest A., Lind M. L., Li J., Rhim W.-K., and Johnson W. L. Adv. Mater., 2007, 19, (23), 4272 LINK https://doi.org/10.1002/adma.200700969 [Google Scholar]
  94. Gross O., Riegler S. S., Stolpe M., Bochtler B., Kuball A., Hechler S., Busch R., and Gallino I. Acta Mater., 2017, 141, 109 LINK https://doi.org/10.1016/j.actamat.2017.09.013 [Google Scholar]
  95. Gross O., Bochtler B., Stolpe M., Hechler S., Hembree W., Busch R., and Gallino I. Acta Mater., 2017, 132, 118 LINK https://doi.org/10.1016/j.actamat.2017.04.030 [Google Scholar]
  96. Granata D., Fischer E., Wessels V., and Löffler J. F. Appl. Phys. Lett., 2015, 106, (1), 011902 LINK https://doi.org/10.1063/1.4905174 [Google Scholar]
  97. Gross O., Neuber N., Kuball A., Bochtler B., Hechler S., Frey M., and Busch R. Commun. Phys., 2019, 2, 83 LINK https://doi.org/10.1038/s42005-019-0180-2 [Google Scholar]
  98. Gallino I., Gross O., Fontana G. D., Evenson Z., and Busch R. Alloys J. Compd., 2014, 615, (1), S35 LINK https://doi.org/10.1016/j.jallcom.2013.12.006 [Google Scholar]
  99. Wilde G., Görler G. P., and Willnecker R. Appl. Phys. Lett., 1994, 65, (4), 397 LINK https://doi.org/10.1063/1.112313 [Google Scholar]
  100. Kumar G., Prades-Rodel S., Blatter A., and Schroers J. Scr. Mater., 2011, 65, (7), 585 LINK https://doi.org/10.1016/j.scriptamat.2011.06.029 [Google Scholar]
  101. Kumar G., Neibecker P., Liu Y. H., and Schroers J. Nat. Commun., 2013, 4, 1536 LINK https://doi.org/10.1038/ncomms2546 [Google Scholar]
  102. Calin M., Gebert A., Ghinea A. C., Gostin P. F., Abdi S., Mickel C., and Eckert J. Mater. Sci. Eng. C, 2013, 33, (2), 875 LINK https://doi.org/10.1016/j.msec.2012.11.015 [Google Scholar]
  103. Corti C. W. ‘What is a White Gold? Progress on the Issues!’, Santa Fe Symposium on Jewelry Manufacturing Technology, Albuquerque, New Mexico, USA, May, 2005, pp. 103119 LINK http://www.santafesymposium.org/2005-santa-fe-symposium-papers/2005-what-is-a-white-gold-progress-on-the-issues [Google Scholar]
  104. Nishiyama N., Takenaka K., and Inoue A. Appl. Phys. Lett., 2006, 88, (12), 121908 LINK https://doi.org/10.1063/1.2186512 [Google Scholar]
  105. Chen N., Qin C. L., Xie G. Q., Louzguine-Luzgin D. V., and Inoue A. J. Mater. Res., 2010, 25, (10), 1943 LINK https://doi.org/10.1557/JMR.2010.0246 [Google Scholar]
  106. Kato H., Wada T., Hasegawa M., Saida J., Inoue A., and Chen H. S. Scr. Mater., 2006, 54, (12), 2023 LINK https://doi.org/10.1016/j.scriptamat.2006.03.025 [Google Scholar]
  107. Garrett G. R., Demetriou M. D., Chen J., and Johnson W. L. Appl. Phys. Lett., 2012, 101, (24), 241913 LINK https://doi.org/10.1063/1.4769997 [Google Scholar]
  108. Nollmann N., Binkowski I., Schmidt V., Rösner H., and Wilde G. Scr. Mater., 2016, 111, 119 LINK https://doi.org/10.1016/j.scriptamat.2015.08.030 [Google Scholar]
  109. Hubek R., Seleznev M., Binkowski I., Peterlechner M., Divinski S. V., and Wilde G. J. Appl. Phys., 2018, 124, (22), 225103 LINK https://doi.org/10.1063/1.5047846 [Google Scholar]
  110. Hubek R., Seleznev M., Binkowski I., Peterlechner M., Divinski S. V., and Wilde G. J. Appl. Phys., 2020, 127, (11), 115109 LINK https://doi.org/10.1063/1.5142162 [Google Scholar]
  111. Zhu F., Nguyen H. K., Song S. X., Aji D. P. B., Hirata A., Wang H., Nakajima K., and Chen M. W. Nat. Commun., 2016, 7, 11516 LINK https://doi.org/10.1038/ncomms11516 [Google Scholar]
  112. Evenson Z., Koschine T., Wei S., Gross O., Bednarcik J., Gallino I., Kruzic J. J., Rätzke K., Faupel F., and Busch R. Scr. Mater., 2015, 103, 14 LINK https://doi.org/10.1016/j.scriptamat.2015.02.026 [Google Scholar]
  113. Murali P., and Ramamurty U. Acta Mater., 2005, 53, (5), 1467 LINK https://doi.org/10.1016/j.actamat.2004.11.040 [Google Scholar]
  114. Gilbert C. C., Ritchie R. O., and Johnson W. L. Appl. Phys. Lett., 1997, 71, (4), 476 LINK https://doi.org/10.1063/1.119610 [Google Scholar]
  115. Lewandowski J. J. Mater. Trans., 2001, 42, (4), 633 LINK https://doi.org/10.2320/matertrans.42.633 [Google Scholar]
  116. Vasquez M., Ascasibar E., Hernando A., and Nielsen O. V. J. Magn. Magn. Mater., 1987, 66, (1), 37 LINK https://doi.org/10.1016/0304-8853(87)90125-9 [Google Scholar]
  117. Donald I. W., Davies H. A., and Kemény T. J. Non-Cryst. Solids, 1982, 50, (3), 351 LINK https://doi.org/10.1016/0022-3093(82)90095-3 [Google Scholar]
  118. Inoue A., Aoki T., and Kimura H. Mater. Trans., JIM, 1997, 38, (2), 175 LINK https://doi.org/10.2320/matertrans1989.38.175 [Google Scholar]
  119. Kazemi H. “Alloy Development of a New Platinum-Based Bulk Metallic Glass”, PhD Thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 3rd March, 2017 LINK https://infoscience.epfl.ch/record/225963?ln=en [Google Scholar]
  120. Lu Z. P., and Liu C. T. J. Mater. Sci., 2004, 39, 3965 LINK https://doi.org/10.1023/B:JMSC.0000031478.73621.64 [Google Scholar]
  121. Kündig A. A., Lepori D., Perry A. J., Rossmann S., Blatter A., Dommann A., and Uggowitzer P. J. Mater. Trans., 2002, 43, (12), 3206 LINK https://doi.org/10.2320/matertrans.43.3206 [Google Scholar]
  122. Chen N., Li Y., and Yao K.-F. J. Alloys Compd., 2010, 504, (S1), S211 LINK https://doi.org/10.1016/j.jallcom.2010.02.079 [Google Scholar]
  123. Zhang W., Guo H., Li Y., Wang Y., Wang H., Chen M., and Yamaura S. J. Alloys Compd., 2014, 617, 310 LINK https://doi.org/10.1016/j.jallcom.2014.07.214 [Google Scholar]
  124. Liu L., Inoue A., and Zhang T. Mater. Trans., 2005, 46, (2), 376 LINK https://doi.org/10.2320/matertrans.46.376 [Google Scholar]
  125. Nishiyama N., Takenaka K., Wada T., Kimura H., and Inoue A. Mater. Trans., 2005, 46, (12), 2807 LINK https://doi.org/10.2320/matertrans.46.2807 [Google Scholar]
  126. Kuball A., Bochtler B., Gross O., Pacheco V., Stolpe M., Hechler S., and Busch R. Acta Mater., 2018, 158, 13 LINK https://doi.org/10.1016/j.actamat.2018.07.039 [Google Scholar]
  127. Li Y., Zhao S., Liu Y., Gong P., and Schroers J. ACS Comb. Sci., 2017, 19, (11), 687 LINK https://doi.org/10.1021/acscombsci.7b00048 [Google Scholar]
  128. Ding S., Gregoire J., Vlassak J. J., and Schroers J. J. Appl. Phys., 2012, 111, (11), 114901 LINK https://doi.org/10.1063/1.4722996 [Google Scholar]
  129. Ding S., Liu Y., Li Y., Liu Z., Sohn S., Walker F. J., and Schroers J. Nature Mater., 2014, 13, 494 LINK https://doi.org/10.1038/nmat3939 [Google Scholar]
  130. Li M.-X., Zhao S.-F., Lu Z., Hirata A., Wen P., Bai H.-Y., Chen M., Schroers J., Liu Y., and Wang W.-H. Nature, 2019, 569, 99 LINK https://doi.org/10.1038/s41586-019-1145-z [Google Scholar]
  131. Perim E., Lee D., Liu Y., Toher C., Gong P., Li Y., Simmons W. N., Levy O., Vlassak J. J., Schroers J., and Curtarolo S. Nat. Commun., 2016, 7, 12315 LINK https://doi.org/10.1038/ncomms12315 [Google Scholar]
  132. Han J. J., Wang C. P., Wang J., Liu X. J., Wang Y., and Liu Z. K. Mater. Des., 2017, 126, 47 LINK https://doi.org/10.1016/j.matdes.2017.04.030 [Google Scholar]
  133. Ford D. C., Hicks D., Oses C., Toher C., and Curtarolo S. Acta Mater., 2019, 176, 297 LINK https://doi.org/10.1016/j.actamat.2019.07.008 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16045078967011
Loading
/content/journals/10.1595/205651321X16045078967011
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error