Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

The properties and glass-forming ability (GFA) of platinum- and palladium-based bulk metallic glasses (BMGs) for jewellery were introduced in Part I of this two-part review (1). Here, we will describe methods for their processing, tarnishing and corrosion resistance and consider their prospects and future developments.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16248976623399
2021-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Houghton_16a_Imp-Part_II.html?itemId=/content/journals/10.1595/205651321X16248976623399&mimeType=html&fmt=ahah

References

  1. O. S. Houghton, A. L. Greer, Johnson Matthey Technol. Rev., 2021, 65, (4), 506 LINK https://www.technology.matthey.com/article/65/4/506-518/ [Google Scholar]
  2. H. W. Kui, A. L. Greer, D. Turnbull, Appl. Phys. Lett., 1984, 45, (6), 615 LINK https://doi.org/10.1063/1.95330 [Google Scholar]
  3. X. Wang, Z. Tian, M. Zeng, N. Nollmann, G. Wilde, C. Tang, AIP Adv., 2017, 7, (9), 095308 LINK https://doi.org/10.1063/1.4992069 [Google Scholar]
  4. J. Schroers, W. L. Johnson, Appl. Phys. Lett., 2004, 84, (18), 3666 LINK https://doi.org/10.1063/1.1738945 [Google Scholar]
  5. O. Haruyama, T. Watanabe, K. Yuki, M. Horiuchi, H. Kato, N. Nishiyama, Phys. Rev. B, 2011, 83, (6), 064201 LINK https://doi.org/10.1103/PhysRevB.83.064201 [Google Scholar]
  6. A. Inoue, N. Nishiyama, H. Kimura, Mater. Trans., JIM, 1997, 38, (2), 179 LINK https://doi.org/10.2320/matertrans1989.38.179 [Google Scholar]
  7. N. Chen, L. Gu, G. Q. Xie, D. V. Louzguine-Luzgin, A. R. Yavari, G. Vaughan, S. D. Imhoff, J. H. Perepezko, T. Abe, A. Inoue, Acta Mater., 2010, 58, (18), 5886 LINK https://doi.org/10.1016/j.actamat.2010.07.003 [Google Scholar]
  8. D. Granata, E. Fischer, V. Wessels, J. F. Löffler, Appl. Phys. Lett., 2015, 106, (1), 011902 LINK https://doi.org/10.1063/1.4905174 [Google Scholar]
  9. X. Yang, X. Ma, Q. Li, S. Guo, J. Alloys Compd., 2013, 554, 446 LINK https://doi.org/10.1016/j.jallcom.2012.11.170 [Google Scholar]
  10. I. Seki, D. V. Louzguine-Luzgin, T. Takahashi, H. Kimura, A. Inoue, Mater. Trans., 2011, 52, (3), 458 LINK https://doi.org/10.2320/matertrans.MBW201001 [Google Scholar]
  11. D. Granata, E. Fischer, V. Wessels, J. F. Löffler, Acta Mater., 2014, 71, 145 LINK https://doi.org/10.1016/j.actamat.2014.03.008 [Google Scholar]
  12. K. F. Yao, F. Ruan, Y. Q. Yang, N. Chen, Appl. Phys. Lett., 2006, 88, (12), 122106 LINK https://doi.org/10.1063/1.2187516 [Google Scholar]
  13. J. S. Yu, Y. Q. Zeng, T. Fujita, T. Hashizume, A. Inoue, T. Sakurai, M. W. Chen, Appl. Phys. Lett., 2010, 96, (14), 141901 LINK https://doi.org/10.1063/1.3373528 [Google Scholar]
  14. A. J. Drehman, A. L. Greer, Acta Metall., 1984, 32, (3), 323 LINK https://doi.org/10.1016/0001-6160(84)90105-6 [Google Scholar]
  15. J. J. Wall, C. T. Liu, W.-K. Rhim, J. J. Z. Li, P. K. Liaw, H. Choo, W. L. Johnson, Appl. Phys. Lett., 2008, 92, (24), 244106 LINK https://doi.org/10.1063/1.2948861 [Google Scholar]
  16. A. Inoue, T. Zhang, A. Takeuchi, W. Zhang, Mater. Trans., JIM, 1996, 37, (4), 636 LINK https://doi.org/10.2320/matertrans1989.37.636 [Google Scholar]
  17. J. Schroers, W. L. Johnson, Appl. Phys. Lett., 2000, 77, (8), 1158 LINK https://doi.org/10.1063/1.1289033 [Google Scholar]
  18. N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue, Intermetallics, 2012, 30, 19 LINK https://doi.org/10.1016/j.intermet.2012.03.020 [Google Scholar]
  19. N. Nishiyama, A. Inoue, Mater. Trans., JIM, 1996, 37, (10), 1531 LINK https://doi.org/10.2320/matertrans1989.37.1531 [Google Scholar]
  20. H.-Y. Ding, Y. Li, K.-F. Yao, Chin. Phys. Lett., 2010, 27, (12), 126101 LINK https://doi.org/10.1088/0256-307X/27/12/126101 [Google Scholar]
  21. J. Schroers, Y. Wu, R. Busch, W. L. Johnson, Acta Mater., 2001, 49, (14), 2773 LINK https://doi.org/10.1016/S1359-6454(01)00159-8 [Google Scholar]
  22. N. Chen, D. Pan, D. V. Louzguine-Luzgin, G. Q. Xie, M. W. Chen, A. Inoue, Scr. Mater., 2010, 62, (1), 17 LINK https://doi.org/10.1016/j.scriptamat.2009.09.013 [Google Scholar]
  23. M. D. Demetriou, M. Floyd, C. Crewdson, J. P. Schramm, G. Garrett, W. L. Johnson, Scr. Mater., 2011, 65, (9), 799 LINK https://doi.org/10.1016/j.scriptamat.2011.07.035 [Google Scholar]
  24. A. A. Kündig, D. Lepori, A. J. Perry, S. Rossmann, A. Blatter, A. Dommann, P. J. Uggowitzer, Mater. Trans., 2002, 43, (12), 3206 LINK https://doi.org/10.2320/matertrans.43.3206 [Google Scholar]
  25. H. Kazemi, “Alloy Development of a New Platinum-Based Bulk Metallic Glass”, PhD Thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 3rd March, 2017 LINK https://infoscience.epfl.ch/record/225963?ln=en [Google Scholar]
  26. T. Freyé, J. Fischer-Buehner, ‘Platinum Alloys in the 21st Century: A Comparative Study’, The 25th Santa Fe Symposium, 15th–18th May, 2011, Albuquerque, USA, pp. 201–230 LINK http://www.santafesymposium.org/2011-santa-fe-symposium-papers/2011-platinum-alloys-in-the-21st-century-a-comparative-study [Google Scholar]
  27. C. W. Corti, ‘Jewellery Alloys – Past, Present and Future’, The Goldsmiths’ Company Jewellery Materials Congress, 8th–9th July, 2019, London, UK, 24 pp LINK https://www.assayofficelondon.co.uk/media/2560/jewellery-alloys-past-present-future-c-corti.pdf [Google Scholar]
  28. S. Mukherjee, J. Schroers, Z. Zhou, W. L. Johnson, W.-K. Rhim, Acta Mater., 2004, 52, (12), 3689 LINK https://doi.org/10.1016/j.actamat.2004.04.023 [Google Scholar]
  29. P. Battaini, ‘The Working Properties for Jewelry Fabrication using New Hard 950 Palladium Alloys’, The 20th Santa Fe Symposium, 10th–13th September 2006, Nashville, USA, pp. 19–53 LINK http://www.santafesymposium.org/2006-santa-fe-symposium-papers/2006-the-working-properties-for-jewelry-fabrication-using-new-hard-950-palladium-alloys [Google Scholar]
  30. J. Schroers, B. Lohwongwatana, W. L. Johnson, A. Peker, Mater. Sci. Eng.: A, 2007, 449–451, 235 LINK https://doi.org/10.1016/j.msea.2006.02.301 [Google Scholar]
  31. B. Lohwongwatana, J. Schroers, W. L. Johnson, ‘Liquidmetal – Hard 18K and .850Pt Alloys that can be Processed like Plastics or Blown Like Glass’, The 13th Santa Fe Symposium, 20th–23rd May 2007, Albuquerque, USA, pp. 289–303 LINK http://www.santafesymposium.org/2007-santa-fe-symposium-papers/2007-liquid-metal-hard-18k-and-850pt-alloys-that-can-be-processed-like-plasticsor-blown-like-glass [Google Scholar]
  32. ‘Swatch Group Signs Exclusive License Agreement With Liquidmetal Technologies’, The Swatch Group Ltd, Switzerland, 10th March, 2011 LINK https://www.swatchgroup.com/en/services/archive/2011/swatch-group-signs-exclusive-license-agreement-liquidmetal-technologies [Google Scholar]
  33. J. Schroers, B. Lohwongwatana, W. L. Johnson, A. Peker, Appl. Phys. Lett., 2005, 87, (6), 061912 LINK https://doi.org/10.1063/1.2008374 [Google Scholar]
  34. J. Schroers, Adv. Mater., 2010, 22, (14), 1566 LINK https://doi.org/10.1002/adma.200902776 [Google Scholar]
  35. J. Schroers, J. Miner. Metals Mater. Soc., 2005, 57, (5), 35 LINK https://doi.org/10.1007/s11837-005-0093-2 [Google Scholar]
  36. S. Cardinal, J. Qiao, J. M. Pelletier, H. Kato, Intermetallics, 2015, 63, 73 LINK https://doi.org/10.1016/j.intermet.2015.04.003 [Google Scholar]
  37. U. E. Klotz, M. Eisenbart, ‘Gold-Based Bulk Metallic Glasses: Hard like Steel, Moldable like Plastics’, The 13th Santa Fe Symposium, 17th–20th May, 2013, Albuquerque, USA, 16 pp LINK http://www.santafesymposium.org/2013-santa-fe-symposium-papers/2013-gold-based-bulk-metallic-glasses-hard-like-steel-moldable-like-plastics [Google Scholar]
  38. M. Eisenbart, “On the Processing and the Tarnishing Mechanism of Gold-Based Bulk Metallic Glasses”, Dissertation, Universität des Saarlandes, Germany, 2015 [Google Scholar]
  39. M. Eisenbart, U. E. Klotz, A. Pfund, A. Zielonka, ‘Method for Casting an Object Made of Metallic Glass’, World Patent Appl. WO2014198380 [Google Scholar]
  40. H. Kazemi, C. Cattin, M. Blank, L. Weber, J. Alloys Compd., 2017, 695, 3419 LINK https://doi.org/10.1016/j.jallcom.2016.12.017 [Google Scholar]
  41. A. Peker, W. L. Johnson, Appl. Phys. Lett., 1993, 63, (17) 2342 LINK https://doi.org/10.1063/1.110520 [Google Scholar]
  42. W. Zhang, H. Guo, Y. Li, Y. Wang, H. Wang, M. Chen, S. Yamaura, J. Alloys Compd., 2014, 617, 310 LINK https://doi.org/10.1016/j.jallcom.2014.07.214 [Google Scholar]
  43. G. Duan, A. Wiest, M. L. Lind, J. Li, W.-K. Rhim, W. L. Johnson, Adv. Mater., 2007, 19, (23), 4272 LINK https://doi.org/10.1002/adma.200700969 [Google Scholar]
  44. A. Inoue, Mater. Trans., JIM, 1995, 36, (7), 866 LINK https://doi.org/10.2320/matertrans1989.36.866 [Google Scholar]
  45. J. Schroers, N. Paton, Adv. Mater. Proc., 2006, 164, (1), 61 [Google Scholar]
  46. B. Lohwongwatana, J. Schroers, W. L. Johnson, Phys. Rev. Lett., 2006, 96, (7), 075503 LINK https://doi.org/10.1103/PhysRevLett.96.075503 [Google Scholar]
  47. T. Zhang, X. Zhang, W. Zhang, F. Jia, A. Inoue, H. Hao, Y. Ma, Mater. Lett., 2011, 65, (14), 2257 LINK https://doi.org/10.1016/j.matlet.2011.04.033 [Google Scholar]
  48. F. Haag, R. Sauget, G. Kurtuldu, S. Prades-Rödel, J. E. K. Schawe, A. Blatter, J. F. Löffler, J. Non-Cryst. Solids, 2019, 521, 119120 LINK https://doi.org/10.1016/j.jnoncrysol.2018.09.035 [Google Scholar]
  49. S. Mechler, E. Yahel, P. S. Pershan, M. Meron, B. Lin, Appl. Phys. Lett., 2011, 98, (25), 251915 LINK https://doi.org/10.1063/1.3599515 [Google Scholar]
  50. J. Schroers, Q. Pham, A. Peker, N. Paton, R. V. Curtis, Scr. Mater., 2007, 57, (4), 341 LINK https://doi.org/10.1016/j.scriptamat.2007.04.033 [Google Scholar]
  51. J. Schroers, T. M. Hodges, G. Kumar, H. Raman, A. J. Barnes, Q. Pham, T. A. Waniuk, Mater. Today, 2011, 14, (1–2), 14 LINK https://doi.org/10.1016/S1369-7021(11)70018-9 [Google Scholar]
  52. R. M. O. Mota, N. Liu, S. A. Kube, J. Chay, H. D. McClintock, J. Schroers, Appl. Mater. Today, 2020, 19, 100567 LINK https://doi.org/10.1016/j.apmt.2020.100567 [Google Scholar]
  53. M. Kanik, P. Bordeenithikasem, J. Schroers, N. Selden, A. Desai, D. Kim, R. M’Closkey, ‘Microscale Three-Dimensional Hemispherical Shell Resonators From Metallic Glass’, International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, California, USA, 25th-26th February, 2014, pp. 1–4 LINK https://doi.org/10.1109/ISISS.2014.6782500 [Google Scholar]
  54. P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nanotech., 2007, 18, (3), 035302 LINK https://doi.org/10.1088/0957-4484/18/3/035302 [Google Scholar]
  55. G. Kumar, H. X. Tang, J. Schroers, Nature, 2009, 457, 868 LINK https://doi.org/10.1038/nature07718 [Google Scholar]
  56. J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, Mater. Sci. Eng. A, 2007, 449–451, 898 LINK https://doi.org/10.1016/j.msea.2006.02.398 [Google Scholar]
  57. Y. C. Chen, J. P. Chu, J. S. C. Jang, C. W. Yu, Mater. Sci. Eng. A, 2012, 556, 488 LINK https://doi.org/10.1016/j.msea.2012.07.017 [Google Scholar]
  58. A. Kato, A. Inoue, H. Horikiri, T. Masumoto, Mater. Trans., JIM, 1994, 35, (2), 125 LINK https://doi.org/10.2320/matertrans1989.35.125 [Google Scholar]
  59. K. S. Lee, Y. W. Chang, Mater. Sci. Eng. A, 2005, 399, (1–2), 238 LINK https://doi.org/10.1016/j.msea.2005.03.103 [Google Scholar]
  60. L. C. Zhang, J. Xu, E. Ma, Mater. Sci. Eng. A, 2006, 434, (1–2), 280 LINK https://doi.org/10.1016/j.msea.2006.06.085 [Google Scholar]
  61. J. S.-C. Jang, C.-T. Tseng, L.-J. Chang, J. C.-C. Huang, Y.-C. Yeh, J.-L. Lou, Adv. Eng. Mater., 2008, 10, (11), 1048 LINK https://doi.org/10.1002/adem.200800104 [Google Scholar]
  62. R. Martinez, G. Kumar, J. Schroers, Scr. Mater., 2008, 59, (2), 187 LINK https://doi.org/10.1016/j.scriptamat.2008.03.008 [Google Scholar]
  63. A. Wiest, J. S. Harmon, M. D. Demetriou, R. D. Conner, W. L. Johnson, Scr. Mater., 2009, 60, (3), 160 LINK https://doi.org/10.1016/j.scriptamat.2008.09.021 [Google Scholar]
  64. L. Shao, A. Datye, J. Huang, J. Ketkaew, S. W. Sohn, S. Zhao, S. Wu, Y. Zhang, U. D. Schwarz, J. Schroers, Sci. Rep., 2017, 7, 7989 LINK https://doi.org/10.1038/s41598-017-08460-6 [Google Scholar]
  65. Y. Huang, P. Xue, S. Guo, Y. Wu, X. Cheng, H. Fan, Z. Ning, F. Cao, D. Xing, J. Sun, P. K. Liaw, Sci. Rep., 2016, 6, 30674 LINK https://doi.org/10.1038/srep30674 [Google Scholar]
  66. W. Chen, Z. Liu, J. Schroers, Acta Mater., 2014, 62, 49 LINK https://doi.org/10.1016/j.actamat.2013.08.053 [Google Scholar]
  67. J. Schroers, T. Nguyen, G. A. Croopnick, Scr. Mater., 2007, 56, (2), 177 LINK https://doi.org/10.1016/j.scriptamat.2006.08.048 [Google Scholar]
  68. P. Rizzi, I. Corazzari, G. Fiore, I. Fenoglio, B. Fubini, S. Kaciulis, L. Battezzati, Corros. Sci., 2013, 77, 135 LINK https://doi.org/10.1016/j.corsci.2013.07.036 [Google Scholar]
  69. O. G. Shpryko, R. Streitel, V. S. K. Balagurusamy, A. Y. Grigoriev, M. Deutsch, B. M. Ocko, M. Meron, B. Lin, P. S. Pershan, Science, 2006, 313, (5783), 77 LINK https://doi.org/10.1126/science.1128314 [Google Scholar]
  70. H. Kato, T. Wada, M. Hasegawa, J. Saida, A. Inoue, H. S. Chen, Scr. Mater., 2006, 54, (12), 2023 LINK https://doi.org/10.1016/j.scriptamat.2006.03.025 [Google Scholar]
  71. J. Schroers, Acta Mater., 2008, 56,(3), 471 LINK https://doi.org/10.1016/j.actamat.2007.10.008 [Google Scholar]
  72. E. B. Pitt, G. Kumar, J. Schroers, J. Appl. Phys., 2011, 110, (4), 043518 LINK https://doi.org/10.1063/1.3624666 [Google Scholar]
  73. S. Cardinal, J. M. Pelletier, M. Eisenbart, U. E. Klotz, Mater. Sci. Eng. A, 2016, 660, 158 LINK https://doi.org/10.1016/j.msea.2016.02.078 [Google Scholar]
  74. P. Boordeenithikasem, S. Sohn, Z. Liu, J. Schroers, Scr. Mater., 2015, 104, 56 LINK https://doi.org/10.1016/j.scriptamat.2015.03.024 [Google Scholar]
  75. B. Bochtler, O. Kruse, R. Busch, J. Phys. Cond. Matt., 2020, 32, (24), 244002 LINK https://doi.org/10.1088/1361-648X/ab7ad7 [Google Scholar]
  76. G. Fiore, P. Rizzi, L. Battezzati, J. Alloys Compd., 2011, 509, S166 LINK https://doi.org/10.1016/j.jallcom.2011.01.087 [Google Scholar]
  77. N. Nishiyama, A. Inoue, Mater. Trans., JIM, 1999, 40, (1), 64 LINK https://doi.org/10.2320/matertrans1989.40.64 [Google Scholar]
  78. C. W. Corti, ‘The Role of Hardness in Jewelry Alloys’, The 22nd Santa Fe Symposium, 18th–21st May 2008, Albuquerque, USA, pp. 103–120 LINK http://www.santafesymposium.org/2008-santa-fe-symposium-papers/2008-the-role-of-hardness-in-jewelry-alloys [Google Scholar]
  79. M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson, R. O. Ritchie, Nat. Mater., 2011, 10, (2), 123 LINK https://doi.org/10.1038/nmat2930 [Google Scholar]
  80. F. Spaepen, Scr. Mater., 2006, 54, (3), 363 LINK https://doi.org/10.1016/j.scriptamat.2005.09.046 [Google Scholar]
  81. A. S. Argon, Acta Metall., 1979, 27, (1), 47 LINK https://doi.org/10.1016/0001-6160(79)90055-5 [Google Scholar]
  82. J. Schroers, W. L. Johnson, Phys. Rev. Lett., 2004, 93, (25), 255506 LINK https://doi.org/10.1103/PhysRevLett.93.255506 [Google Scholar]
  83. G. Kumar, S. Prades-Rodel, A. Blatter, J. Schroers, Scr. Mater., 2011, 65, (7), 585 LINK https://doi.org/10.1016/j.scriptamat.2011.06.029 [Google Scholar]
  84. G. Kumar, P. Neibecker, Y. H. Liu, J. Schroers, Nat. Commun., 2013, 4, 1536 LINK https://doi.org/10.1038/ncomms2546 [Google Scholar]
  85. J. J. Lewandowski, W. H. Wang, A. L. Greer, Philos. Mag.Lett., 2005, 85, (2), 77 LINK https://doi.org/10.1080/09500830500080474 [Google Scholar]
  86. L. Tian, Y.-Q. Cheng, Z.-W. Shan, J. Li, C.-C. Wang, X.-D. Han, J. Sun, E. Ma, Nat. Commun., 2012, 3, 609 LINK https://doi.org/10.1038/ncomms1619 [Google Scholar]
  87. A. L. Greer, Mater. Today, 2009, 12, (1–2), 14 LINK https://doi.org/10.1016/S1369-7021(09)70037-9 [Google Scholar]
  88. H. Kazemi, C. Cattin, G. Hodel, T. Pachova, L. Weber, J. Non-Cryst. Solids, 2017, 460, 66 LINK https://doi.org/10.1016/j.jnoncrysol.2017.01.025 [Google Scholar]
  89. H. W. Bi, A. Inoue, F. F. Han, Y. Han, F. L. Kong, S. L. Zhu, E. Shalaan, F. Al-Marzouki, A. L. Greer, Acta Mater., 2018, 147, 90 LINK https://doi.org/10.1016/j.actamat.2018.01.016 [Google Scholar]
  90. Z. C. Zhong, X. Y. Jiang, A. L. Greer, Mater. Sci. Eng. A, 1997, 226–228, 531 LINK https://doi.org/10.1016/S0921-5093(97)80062-7 [Google Scholar]
  91. J. Qiao, H. Jia, P. K. Liaw, Mater. Sci. Eng. R, 2016, 100, 1 LINK https://doi.org/10.1016/j.mser.2015.12.001 [Google Scholar]
  92. M.-X. Li, S.-F. Zhao, Z. Lu, A. Hirata, P. Wen, H.-Y. Bai, M. Chen, J. Schroers, Y. Liu, W.-H. Wang, Nature, 2019, 569, 99 LINK https://doi.org/10.1038/s41586-019-1145-z [Google Scholar]
  93. P. Murali, U. Ramamurty, Acta Mater., 2005, 53, (5), 1467 LINK https://doi.org/10.1016/j.actamat.2004.11.040 [Google Scholar]
  94. Z. Chen, A. Datye, P. A. Brooks, M. Sprole, J. Ketkaew, S. Sohn, J. Schroers, U. D. Schwarz, MRS Adv., 2019, 4, 73 LINK https://doi.org/10.1557/adv.2019.30 [Google Scholar]
  95. A. Datye, J. Ketkaew, J. Schroers, U. D. Schwarz, J. Alloys Compd., 2020, 819, 152979 LINK https://doi.org/10.1016/j.jallcom.2019.152979 [Google Scholar]
  96. H. Vogel, Phys. Z., 1921, 22, 645 [Google Scholar]
  97. G. S. Fulcher, J. Am. Ceram. Soc., 1925, 8, (6), 339 LINK https://doi.org/10.1111/j.1151-2916.1925.tb16731.x [Google Scholar]
  98. G. Tammann, W. Hesse, Z. Anorg. Allg. Chem., 1926, 156, (1), 245 LINK https://doi.org/10.1002/zaac.19261560121 [Google Scholar]
  99. C. T. Moynihan, A. J. Easteal, M. A. De Bolt, J. Tucker, J. Am. Ceram. Soc., 1976, 59, (1–2), 12 LINK https://doi.org/10.1111/j.1151-2916.1976.tb09376.x [Google Scholar]
  100. H. S. Chen, Rep. Prog. Phys., 1980, 43, (4), 353 LINK https://doi.org/10.1088/0034-4885/43/4/001 [Google Scholar]
  101. A. van den Beukel, J. Sietsma, Acta Metall.Mater., 1990, 38, (3), 383 LINK https://doi.org/10.1016/0956-7151(90)90142-4 [Google Scholar]
  102. A. Niikura, A. P. Tsai, A. Inoue, T. Masumoto, J. Non-Cryst. Solids, 1993, 159, (3), 229 LINK https://doi.org/10.1016/0022-3093(93)90227-O [Google Scholar]
  103. J. J. Lewandowski, Mater. Trans., 2001, 42, (4), 633 LINK https://doi.org/10.2320/matertrans.42.633 [Google Scholar]
  104. G. Kumar, M. Ohnuma, T. Furubayashi, T. Ohkubo, K. Hono, J. Non-Cryst. Solids, 2008, 354, (10–11), 882 LINK https://doi.org/10.1016/j.jnoncrysol.2007.08.001 [Google Scholar]
  105. U. Köster, J. Meinhardt, Mater. Sci. Eng. A, 1994, 178, (1–2), 271 LINK https://doi.org/10.1016/0921-5093(94)90553-3 [Google Scholar]
  106. M. T. Clavaguera-Mora, N. Clavaguera, D. Crespo, T. Pradell, Prog. Mater. Sci., 2002, 47, (6), 559 LINK https://doi.org/10.1016/S0079-6425(00)00021-9 [Google Scholar]
  107. R. I. Wu, G. Wilde, J. H. Perepezko, Mater. Sci. Eng. A, 2001, 301, (1), 12 LINK https://doi.org/10.1016/S0921-5093(00)01390-3 [Google Scholar]
  108. H. S. Kim, P. J. Warren, B. Cantor, H. R. Lee, Nanostruct. Mater., 1999, 11, (2), 241 LINK https://doi.org/10.1016/S0965-9773(99)00037-9 [Google Scholar]
  109. A. L. Greer, Mater. Sci. Eng. A, 2001, 304–306, 68 LINK https://doi.org/10.1016/S0921-5093(00)01449-0 [Google Scholar]
  110. A. L. Greer, Nature, 1993, 366, (6453), 303 LINK https://doi.org/10.1038/366303a0 [Google Scholar]
  111. T. Egami, W. Waseda, J. Non-Cryst. Solids, 1984, 64, (1–2), 113 LINK https://doi.org/10.1016/0022-3093(84)90210-2 [Google Scholar]
  112. I.-R. Lu, M. Kolbe, G. P. Görler, R. Willnecker, Mater. Sci. Eng.: A, 2004, 375–377, 754 LINK https://doi.org/10.1016/j.msea.2003.10.260 [Google Scholar]
  113. B. A. Legg, J. Schroers, R. Busch, Acta Mater., 2007, 55, (3), 1109 LINK https://doi.org/10.1016/j.actamat.2006.09.024 [Google Scholar]
  114. N. Nishiyama, A. Inoue, J. Non-Cryst. Solids, 2002, 312–314, 575 LINK https://doi.org/10.1016/S0022-3093(02)01784-2 [Google Scholar]
  115. J.-Y. Yang, J.-L. Gu, S.-Q. Chen, C.-H. Luan, Y. Shao, K.-F. Yao, Mater. Corros., 2018, 69, (11), 1509 LINK https://doi.org/10.1002/maco.201810072 [Google Scholar]
  116. M. Eisenbart, U. E. Klotz, R. Busch, I. Gallino, Corros. Sci., 2014, 85, 258 LINK https://doi.org/10.1016/j.corsci.2014.04.024 [Google Scholar]
  117. M. Eisenbart, U. E. Klotz, R. Busch, I. Gallino, J. Alloys Compd., 2014, 615, (1), S 118 LINK https://doi.org/10.1016/j.jallcom.2013.11.167 [Google Scholar]
  118. Z. Evenson, S. E. Naleway, S. Wei, O. Gross, J. J. Kruzic, I. Gallino, W. Possart, M. Stommel, R. Busch, Phys. Rev. B, 2014, 89, (17), 174204 LINK https://doi.org/10.1103/PhysRevB.89.174204 [Google Scholar]
  119. Z. Evenson, T. Koschine, S. Wei, O. Gross, J. Bednarcik, I. Gallino, J. J. Kruzic, K. Rätzke, F. Faupel, R. Busch, Scr. Mater., 2015, 103, 14 LINK https://doi.org/10.1016/j.scriptamat.2015.02.026 [Google Scholar]
  120. Y.-F. Wu, W.-C. Chiang, J. Chu, T.-G. Nieh, Y. Kawamura, J.-K. Wu, Mater. Lett., 2006, 60, (19), 2416 LINK https://doi.org/10.1016/j.matlet.2006.01.068 [Google Scholar]
  121. A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, J. W. Yeh, Intermetallics, 2011, 19, (10), 1546 LINK https://doi.org/10.1016/j.intermet.2011.05.030 [Google Scholar]
  122. C. L. Qin, Y. Q. Zeng, D. V. Louzguine, N. Nishiyama, A. Inoue, J. Alloys Compd., 2010, 504, S 172 LINK https://doi.org/10.1016/j.jallcom.2010.03.104 [Google Scholar]
  123. N. Chen, C. L. Qin, G. Q. Xie, D. V. Louzguine-Luzgin, A. Inoue, J. Mater. Res., 2010, 25, (10), 1943 LINK https://doi.org/10.1557/JMR.2010.0246 [Google Scholar]
  124. F. Qin, G. Xie, T. Wada, S. Zhu, Z. Dan, Mater. Trans., 2013, 54, (8), 1347 LINK https://doi.org/10.2320/matertrans.MF201314 [Google Scholar]
  125. L. Y. Watanabe, S. N. Roberts, N. Baca, A. Wiest, S. J. Garrett, R. D. Conner, Mater. Sci. Eng. C, 2013, 33, (7), 4021 LINK https://doi.org/10.1016/j.msec.2013.05.044 [Google Scholar]
  126. C. Ma, N. Nishiyama, A. Inoue, Mater. Trans., 2002, 43, (5), 1161 LINK https://doi.org/10.2320/matertrans.43.1161 [Google Scholar]
  127. J. Yu, Y. Ding, C. Xu, A. Inoue, T. Sakurai, M. Chen, Chem. Mater., 2008, 20, (14), 4548 LINK https://doi.org/10.1021/cm8009644 [Google Scholar]
  128. P. Rizzi, F. Scaglione, L. Battezzati, J. Alloys Compd., 2014, 586, (S1), S117 LINK https://doi.org/10.1016/j.jallcom.2012.11.029 [Google Scholar]
  129. Y. Xue, F. Scaglione, P. Rizzi, L. Battezzati, Corros. Sci., 2017, 127, 141 LINK https://doi.org/10.1016/j.corsci.2017.08.026 [Google Scholar]
  130. Y. Xue, F. Scaglione, P. Rizzi, L. Battezzati, P. Denis, H.-J. Fecht, Appl. Surf. Sci., 2019, 476, 412 LINK https://doi.org/10.1016/j.apsusc.2019.01.099 [Google Scholar]
  131. S. Mozgovoy, J. Heinrich, U. E. Klotz, R. Busch, Intermetallics, 2010, 18, (12), 2289 LINK https://doi.org/10.1016/j.intermet.2010.07.021 [Google Scholar]
  132. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S. K. Sharma, H. Teichler, Rev. Mod. Phys., 2003, 75, (1), 237 LINK https://doi.org/10.1103/RevModPhys.75.237 [Google Scholar]
  133. H.-B. Yi, W.-H. Wang, K. Samwer, Mater. Today, 2013, 16, (5), 183 LINK https://doi.org/10.1016/j.mattod.2013.05.002 [Google Scholar]
  134. O. Gross, N. Neuber, A. Kuball, B. Bochtler, S. Hechler, M. Frey, R. Busch, Commun. Phys., 2019, 2, 83 LINK https://doi.org/10.1038/s42005-019-0180-2 [Google Scholar]
  135. C. W. Corti, ‘What is a White Gold? Progress on the Issues!’, Santa Fe Symposium on Jewelry Manufacturing Technology, Albuquerque, New Mexico, USA, May, 2005, pp. 103–119 LINK http://www.santafesymposium.org/2005-santa-fe-symposium-papers/2005-what-is-a-white-gold-progress-on-the-issues [Google Scholar]
  136. N. Nishiyama, K. Takenaka, A. Inoue, Appl. Phys. Lett., 2006, 88, (12), 121908 LINK https://doi.org/10.1063/1.2186512 [Google Scholar]
  137. J. H. Na, K. H. Han, G. R. Garrett, M. E. Launey, M. D. Demetriou, W. L. Johnson, Sci. Rep., 2019, 9, 3269 LINK https://doi.org/10.1038/s41598-019-40014-w [Google Scholar]
  138. L. Liu, A. Inoue, T. Zhang, Mater. Trans., 2005, 46, (2), 376 LINK https://doi.org/10.2320/matertrans.46.376 [Google Scholar]
  139. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, Mater. Trans., 2005, 46, (12), 2807 LINK https://doi.org/10.2320/matertrans.46.2807 [Google Scholar]
  140. K. Takenaka, T. Wada, N. Nishiyama, H. Kimura, A. Inoue, Mater. Trans., 2005, 46, (7), 1720 LINK https://doi.org/10.2320/matertrans.46.1720 [Google Scholar]
  141. L. Liu, X. Zhao, C. Ma, S. Pang, T. Zhang, J. Non-Cryst. Solids, 2006, 352, (52–54), 5487 LINK https://doi.org/10.1016/j.jnoncrysol.2006.09.025 [Google Scholar]
  142. N. Chen, Y. Li, K.-F. Yao, J. Alloys Compd., 2010, 504, (S1), S211 LINK https://doi.org/10.1016/j.jallcom.2010.02.079 [Google Scholar]
  143. D. V. Louzguine-Luzgin, K. Georgarakis, V. Zadorozhnyy, N. Chen, K. Nakayama, G. Vaughan, A. R. Yavari, A. Inoue, Intermetallics, 2012, 20, (1), 135 LINK https://doi.org/10.1016/j.intermet.2011.08.022 [Google Scholar]
/content/journals/10.1595/205651321X16248976623399
Loading
/content/journals/10.1595/205651321X16248976623399
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test