Skip to content
Volume 66, Issue 1
  • ISSN: 2056-5135


This study assesses the use of short wavelength radiative heating techniques such as near infrared (NIR), intense pulsed light (IPL) and ultraviolet (UV) heating for processing coatings in energy applications. It concentrates on the importance of investigating different radiative wavelengths to advance these technologies as scalable processes reduced heating times. It illustrates the mechanisms by which these techniques can transform thin film materials: sintering, binder removal, drying and chemical reactions. It focuses on successful research applications and the methods used to apply these radiative mechanisms in solar energy, battery storage and fuel cells, while considering the materials suitable for such intentions. The purpose of this paper is to highlight to academics as well as industrialists some of the potential advantages and applications of radiative heating technologies.


Article metrics loading...

Loading full text...

Full text loading...



  1. “Net Zero – The UK’s Contribution to Stopping Global Warming”, Committee on Climate Change, London, UK, May, 2019, 275 pp LINK [Google Scholar]
  2. Kim S.-H., Kim J.-H., Cho S. J., and Lee S.-Y. Adv. Energy Mater., 2019, 9, (40), 1901841 LINK [Google Scholar]
  3. Rao A. S., Rashmi K. R., Manjunatha D. V., Jayarama A., Prabhu S., and Pinto R. Int. J. Hydrogen Energy, 2019, 44, (42), 23762 LINK [Google Scholar]
  4. Yang Z., Luo Y., Gao X., and Wang R. ChemElectroChem, 2020, 7, (12), 2599 LINK [Google Scholar]
  5. Mizushima K., Jones P. C., Wiseman P. J., and Goodenough J. B. Mat. Res. Bull., 1980, 15, 783 LINK [Google Scholar]
  6. Kojima A., Teshima K., Shirai Y., and Miyasaka T. J. Am. Chem. Soc., 2009, 131, (17), 6050 LINK [Google Scholar]
  7. Lee M. M., Teuscher J., Miyasaka T., Murakami T. N., and Snaith H. J. Science, 2012, 338, (6107), 643 LINK [Google Scholar]
  8. Baker J., Deganello D., Gethin D. T., and Watson T. M. Mater. Res. Innov., 2014, 18, (2), 86 LINK [Google Scholar]
  9. Hösel M., Søndergaard R. R., Jørgensen M., and Krebs F. C. Energy Technol., 2013, 1, (1), 102 LINK [Google Scholar]
  10. Park J., Shin K., and Lee C. Int. J. Precis. Eng. Manuf., 2016, 17, (4), 537 LINK [Google Scholar]
  11. Perelaer J., Abbel R., Wünscher S., Jani R., Van Lammeren T., and Schubert U. S. Adv. Mater., 2012, 24, (19), 2620 LINK [Google Scholar]
  12. Oghbaei M., and Mirzaee O. J. Alloys Compd., 2010, 494, (1–2), 175 LINK [Google Scholar]
  13. Hooper K., Carnie M., Charbonneau C., and Watson T. Int. J. Photoenergy, 2014, 953623 LINK [Google Scholar]
  14. Mabbett I., Elvins J., Gowenlock C., Glover C., Jones P., Williams G., and Worsley D. Prog. Org. Coatings, 2014, 77, (2), 494 LINK [Google Scholar]
  15. Alberola-Borràs J. A., Baker J. A., De Rossi F., Vidal R., Beynon D., Hooper K. E. A., Watson T. M., and Mora-Seró I. iScience, 2018, 9, 542 LINK [Google Scholar]
  16. Brennan D. A. ‘A Computational and Experimental Study on Near-Infrared Heating for the Coil Coating Industry’, Swansea University, Swansea, UK, 2018 [Google Scholar]
  17. Palmieri L., Cacace D., ‘High Intensity Pulsed Light Technology’, in “Emerging Technologies for Food Processing”, ed. and Sun D.-W. Elsevier, 2005 LINK [Google Scholar]
  18. Cecile C., Hooper K., Carnie M., Searle J., Philip B., Wragg D., Watson T., and Worsley D. Prog. Photovolt.: Res. Appl., 2014, 22, (12), 1267 LINK [Google Scholar]
  19. Carnie M. J., Charbonneau C., Barnes P. R. F., Davies M. L., Mabbett I., Watson T. M., O’Regan B. C., and Worsley D. A. J. Mater. Chem. A, 2013, 1, (6), 2225 LINK [Google Scholar]
  20. Dunn J. E., Clark R. W., Asmus J. F., Pearlman J. S., Boyer K., Painchaud F., and Hofmann G. A. Maxwell Laboratories Inc, ‘Methods for Preservation of Foodstuffs’, US Patent 4,871,559; 1989 [Google Scholar]
  21. Kinney L. C., and Tomkins E. H. Monsanto Company, ‘Method of Making Printed Circuits’US Patent 3,451,813; 1969 [Google Scholar]
  22. Imperiyka M., Ahmad A., Hanifah S. A., and Bella F. Phys. B: Condens. Matter, 2014, 450, 151 LINK [Google Scholar]
  23. Zhang Y., Lu W., Cong L., Liu J., Sun L., Mauger A., Julien C. M., Xie H., and Liu J. J. Power Sources, 2019, 420, 63 LINK [Google Scholar]
  24. Crivello J. V., and Reichmanis E. Chem. Mater., 2014, 26, (1), 533 LINK [Google Scholar]
  25. Pan X., Tasdelen M. A., Laun J., Junkers T., Yagci Y., and Matyjaszewski K. Prog. Polym. Sci., 2016, 62, 73 LINK [Google Scholar]
  26. Nair J. R., Gerbaldi C., Destro M., Bongiovanni R., and Penazzi N. React. Funct. Polym., 2011, 71, (4), 409 LINK [Google Scholar]
  27. Wünscher S., Abbel R., Perelaer J., and Schubert U. S. J. Mater. Chem. C, 2014, 2, (48), 10232 LINK [Google Scholar]
  28. Bryant D., Mabbett I., Greenwood P., Watson T., Wijdekop M., and Worsley D. Org. Electron., 2014, 15, (6), 1126 LINK [Google Scholar]
  29. Jeschull F., Brandell D., Wohlfahrt-Mehrens M., and Memm M. Energy Technol., 2017, 5, (11), 2108 LINK [Google Scholar]
  30. Baker J., Hooper K., Meroni S., Pockett A., McGettrick J., Wei Z., Escalante R., Oskam G., Carnie M., and Watson T. J. Mater. Chem. A, 2017, 5, (35), 18643 LINK [Google Scholar]
  31. Hwang H.-J., and Kim H.-S. J. Nanosci. Nanotechnol., 2015, 15, (7), 5028 LINK [Google Scholar]
  32. Feleki B., Bex G., Andriessen R., Galagan Y., and Di Giacomo F. Mater. Today Commun., 2017, 13, 232 LINK [Google Scholar]
  33. Sandmann A., Notthoff C., and Winterer M. J. Appl. Phys., 2013, 113, (4), 044310 LINK [Google Scholar]
  34. Oh Y., Lee S.-N., Kim H.-K., and Kim J. J. Electrochem. Soc., 2012, 159, (10), H 777 LINK [Google Scholar]
  35. Danaei R., Varghese T., Ahmadzadeh M., McCloy J., Hollar C., Saleh M. S., Park J., Zhang Y., and Panat R. Adv. Eng. Mater., 2019, 21, (1), 1, 1800800 LINK [Google Scholar]
  36. Dharmadasa R., Lavery B., Dharmadasa I. M., and Druffel T. ACS Appl. Mater. Interfaces, 2014, 6, (7), 5034 LINK [Google Scholar]
  37. Dharmadasa R., Dharmadasa I. M., and Druffel T. Adv. Eng. Mater., 2014, 16, (11), 1351 LINK [Google Scholar]
  38. Dhage S. R., Kim H.-S., and Hahn H. T. J. Electron. Mater., 2011, 40, (2), 122 LINK [Google Scholar]
  39. Kim H.-S., Dhage S. R., Shim D.-E., and Hahn H. T. Appl. Phys. A, 2009, 97, (4), 791 LINK [Google Scholar]
  40. Park S.-H., Chung W.-H., and Kim H.-S. J. Mater. Process. Technol., 2014, 214, (11), 2730 LINK [Google Scholar]
  41. Lee D. J., Park S. H., Jang S., Kim H. S., Oh J. H., and Song Y. W. J. Micromechanics Microengineering, 2011, 21, (12), 125023 LINK [Google Scholar]
  42. Park S.-H., and Kim H.-S. Thin Solid Films, 2014, 550, 575 LINK [Google Scholar]
  43. Yeshchenko O. A., Dmitruk I. M., Alexeenko A. A., and Dmytruk A. M. Phys. Rev. B, 2007, 75, (8), 085434 LINK [Google Scholar]
  44. Galagan Y., Coenen E. W. C., Abbel R., Van Lammeren T. J., Sabik S., Barink M., Meinders E. R., Andriessen R., and Blom P. W. M. Org. Electron., 2013, 14, (1), 38 LINK [Google Scholar]
  45. Hwang Y.-T., Chung W.-H., Jang Y.-R., and Kim H.-S. ACS Appl. Mater. Interfaces, 2016, 8, (13), 8591 LINK [Google Scholar]
  46. Tobjörk D., Aarnio H., Pulkkinen P., Bollström R., Määttänen A., Ihalainen P., Mäkelä T., Peltonen J., Toivakka M., Tenhu H., and Österbacka R. Thin Solid Films, 2012, 520, (7), 2949 LINK [Google Scholar]
  47. Denneulin A., Blayo A., Neuman C., and Bras J. J. Nanoparticle Res., 2011, 13, (9), 3815 LINK [Google Scholar]
  48. Krebs F. C., Søndergaard R., and Jørgensen M. Solar Energy Mater. Solar Cells, 2011, 95, (5), 1348 LINK [Google Scholar]
  49. Troughton J., Carnie M. J., Davies M. L., Charbonneau C., Jewell E. H., Worsley D. A., and Watson T. M. J. Mater. Chem. A, 2016, 4, (9), 3471 LINK [Google Scholar]
  50. Troughton J., Charbonneau C., Carnie M. J., Davies M. L., Worsley D. A., and Watson T. M. J. Mater. Chem. A, 2015, 3, (17), 9123 LINK [Google Scholar]
  51. Lavery B. W., Kumari S., Konermann H., Draper G. L., Spurgeon J., and Druffel T. ACS Appl. Mater. Interfaces, 2016, 8, (13), 8419 LINK [Google Scholar]
  52. Potts S.-J., Lau Y. C., Dunlop T., Claypole T., and Phillips C. J. Mater. Sci., 2019, 54, (11), 8163 LINK [Google Scholar]
  53. Hooper K. E. A. ‘Rapid Processing of Dye-Sensitised Solar Cells Using Near Infrared Radiative Heating’, PhD Thesis, Swansea University, UK, 2014 LINK [Google Scholar]
  54. Roy R., Agrawal D., Cheng J., and Gedevanlshvili S. Nature, 1999, 399, (6737), 668 LINK [Google Scholar]
  55. Huang S.-H., Guan C.-K., Lee P.-H., Huang H.-C., Li C.-F., Huang Y.-C., and Su W.-F. Adv. Energy Mater., 2020, 10, (37), 2001567 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error