Skip to content
1887
Volume 66, Issue 1
  • ISSN: 2056-5135

Abstract

This study assesses the use of short wavelength radiative heating techniques such as near infrared (NIR), intense pulsed light (IPL) and ultraviolet (UV) heating for processing coatings in energy applications. It concentrates on the importance of investigating different radiative wavelengths to advance these technologies as scalable processes reduced heating times. It illustrates the mechanisms by which these techniques can transform thin film materials: sintering, binder removal, drying and chemical reactions. It focuses on successful research applications and the methods used to apply these radiative mechanisms in solar energy, battery storage and fuel cells, while considering the materials suitable for such intentions. The purpose of this paper is to highlight to academics as well as industrialists some of the potential advantages and applications of radiative heating technologies.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16260797478755
2021-07-12
2024-08-31
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/1/Baker_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16260797478755&mimeType=html&fmt=ahah

References

  1. “Net Zero – The UK’s Contribution to Stopping Global Warming”, Committee on Climate Change, London, UK, May, 2019, 275 pp LINK https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ [Google Scholar]
  2. S.-H. Kim, J.-H. Kim, S. J. Cho, S.-Y. Lee, Adv. Energy Mater., 2019, 9, (40), 1901841 LINK https://doi.org/10.1002/aenm.201901841 [Google Scholar]
  3. A. S. Rao, K. R. Rashmi, D. V. Manjunatha, A. Jayarama, S. Prabhu, R. Pinto, Int. J. Hydrogen Energy, 2019, 44, (42), 23762 LINK https://doi.org/10.1016/j.ijhydene.2019.07.084 [Google Scholar]
  4. Z. Yang, Y. Luo, X. Gao, R. Wang, ChemElectroChem, 2020, 7, (12), 2599 LINK https://doi.org/10.1002/celc.202000411 [Google Scholar]
  5. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull., 1980, 15, 783 LINK https://doi.org/10.1016/0025-5408(80)90012-4 [Google Scholar]
  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 2009, 131, (17), 6050 LINK https://doi.org/10.1021/ja809598r [Google Scholar]
  7. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science, 2012, 338, (6107), 643 LINK https://doi.org/10.1126/science.1228604 [Google Scholar]
  8. J. Baker, D. Deganello, D. T. Gethin, T. M. Watson, Mater. Res. Innov., 2014, 18, (2), 86 LINK https://doi.org/10.1179/1433075x14y.0000000203 [Google Scholar]
  9. M. Hösel, R. R. Søndergaard, M. Jørgensen, F. C. Krebs, Energy Technol., 2013, 1, (1), 102 LINK https://doi.org/10.1002/ente.201200029 [Google Scholar]
  10. J. Park, K. Shin, C. Lee, Int. J. Precis. Eng. Manuf., 2016, 17, (4), 537 LINK https://doi.org/10.1007/s12541-016-0067-z [Google Scholar]
  11. J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. Van Lammeren, U. S. Schubert, Adv. Mater., 2012, 24, (19), 2620 LINK https://doi.org/10.1002/adma.201104417 [Google Scholar]
  12. M. Oghbaei, O. Mirzaee, J. Alloys Compd., 2010, 494, (1–2), 175 LINK https://doi.org/10.1016/j.jallcom.2010.01.068 [Google Scholar]
  13. K. Hooper, M. Carnie, C. Charbonneau, T. Watson, Int. J. Photoenergy, 2014, 953623 LINK https://doi.org/10.1155/2014/953623 [Google Scholar]
  14. I. Mabbett, J. Elvins, C. Gowenlock, C. Glover, P. Jones, G. Williams, D. Worsley, Prog. Org. Coatings, 2014, 77, (2), 494 LINK https://doi.org/10.1016/j.porgcoat.2013.11.015 [Google Scholar]
  15. J. A. Alberola-Borràs, J. A. Baker, F. De Rossi, R. Vidal, D. Beynon, K. E. A. Hooper, T. M. Watson, I. Mora-Seró, iScience, 2018, 9, 542 LINK https://doi.org/10.1016/j.isci.2018.10.020 [Google Scholar]
  16. D. A. Brennan, ‘A Computational and Experimental Study on Near-Infrared Heating for the Coil Coating Industry’, Swansea University, Swansea, UK, 2018 [Google Scholar]
  17. L. Palmieri, D. Cacace, ‘High Intensity Pulsed Light Technology’, in “Emerging Technologies for Food Processing”, ed. D.-W. Sun, Elsevier, 2005 LINK https://doi.org/10.1016/B978-012676757-5/50013-X [Google Scholar]
  18. C. Cecile, K. Hooper, M. Carnie, J. Searle, B. Philip, D. Wragg, T. Watson, D. Worsley, Prog. Photovolt.: Res. Appl., 2014, 22, (12), 1267 LINK https://doi.org/10.1002/pip.2368 [Google Scholar]
  19. M. J. Carnie, C. Charbonneau, P. R. F. Barnes, M. L. Davies, I. Mabbett, T. M. Watson, B. C. O’Regan, D. A. Worsley, J. Mater. Chem. A, 2013, 1, (6), 2225 LINK https://doi.org/10.1039/c2ta01005d [Google Scholar]
  20. J. E. Dunn, R. W. Clark, J. F. Asmus, J. S. Pearlman, K. Boyer, F. Painchaud, G. A. Hofmann, Maxwell Laboratories Inc,, ‘Methods for Preservation of Foodstuffs’, US Patent 4,871,559; 1989 [Google Scholar]
  21. L. C. Kinney, E. H. Tomkins, Monsanto Company,, ‘Method of Making Printed Circuits’US Patent 3,451,813; 1969 [Google Scholar]
  22. M. Imperiyka, A. Ahmad, S. A. Hanifah, F. Bella, Phys. B: Condens. Matter, 2014, 450, 151 LINK https://doi.org/10.1016/j.physb.2014.05.053 [Google Scholar]
  23. Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun, A. Mauger, C. M. Julien, H. Xie, J. Liu, J. Power Sources, 2019, 420, 63 LINK https://doi.org/10.1016/j.jpowsour.2019.02.090 [Google Scholar]
  24. J. V. Crivello, E. Reichmanis, Chem. Mater., 2014, 26, (1), 533 LINK https://doi.org/10.1021/cm402262g [Google Scholar]
  25. X. Pan, M. A. Tasdelen, J. Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci., 2016, 62, 73 LINK https://doi.org/10.1016/j.progpolymsci.2016.06.005 [Google Scholar]
  26. J. R. Nair, C. Gerbaldi, M. Destro, R. Bongiovanni, N. Penazzi, React. Funct. Polym., 2011, 71, (4), 409 LINK https://doi.org/10.1016/j.reactfunctpolym.2010.12.007 [Google Scholar]
  27. S. Wünscher, R. Abbel, J. Perelaer, U. S. Schubert, J. Mater. Chem. C, 2014, 2, (48), 10232 LINK https://doi.org/10.1039/c4tc01820f [Google Scholar]
  28. D. Bryant, I. Mabbett, P. Greenwood, T. Watson, M. Wijdekop, D. Worsley, Org. Electron., 2014, 15, (6), 1126 LINK https://doi.org/10.1016/j.orgel.2014.03.001 [Google Scholar]
  29. F. Jeschull, D. Brandell, M. Wohlfahrt-Mehrens, M. Memm, Energy Technol., 2017, 5, (11), 2108 LINK https://doi.org/10.1002/ente.201700200 [Google Scholar]
  30. J. Baker, K. Hooper, S. Meroni, A. Pockett, J. McGettrick, Z. Wei, R. Escalante, G. Oskam, M. Carnie, T. Watson, J. Mater. Chem. A, 2017, 5, (35), 18643 LINK https://doi.org/10.1039/c7ta05674e [Google Scholar]
  31. H.-J. Hwang, H.-S. Kim, J. Nanosci. Nanotechnol., 2015, 15, (7), 5028 LINK https://doi.org/10.1166/jnn.2015.9868 [Google Scholar]
  32. B. Feleki, G. Bex, R. Andriessen, Y. Galagan, F. Di Giacomo, Mater. Today Commun., 2017, 13, 232 LINK https://doi.org/10.1016/j.mtcomm.2017.09.007 [Google Scholar]
  33. A. Sandmann, C. Notthoff, M. Winterer, J. Appl. Phys., 2013, 113, (4), 044310 LINK https://doi.org/10.1063/1.4788906 [Google Scholar]
  34. Y. Oh, S.-N. Lee, H.-K. Kim, J. Kim, J. Electrochem. Soc., 2012, 159, (10), H 777 LINK https://doi.org/10.1149/2.011210jes [Google Scholar]
  35. R. Danaei, T. Varghese, M. Ahmadzadeh, J. McCloy, C. Hollar, M. S. Saleh, J. Park, Y. Zhang, R. Panat, Adv. Eng. Mater., 2019, 21, (1), 1, 1800800 LINK https://doi.org/10.1002/adem.201800800 [Google Scholar]
  36. R. Dharmadasa, B. Lavery, I. M. Dharmadasa, T. Druffel, ACS Appl. Mater. Interfaces, 2014, 6, (7), 5034 LINK https://doi.org/10.1021/am500124t [Google Scholar]
  37. R. Dharmadasa, I. M. Dharmadasa, T. Druffel, Adv. Eng. Mater., 2014, 16, (11), 1351 LINK https://doi.org/10.1002/adem.201400008 [Google Scholar]
  38. S. R. Dhage, H.-S. Kim, H. T. Hahn, J. Electron. Mater., 2011, 40, (2), 122 LINK https://doi.org/10.1007/s11664-010-1431-x [Google Scholar]
  39. H.-S. Kim, S. R. Dhage, D.-E. Shim, H. T. Hahn, Appl. Phys. A, 2009, 97, (4), 791 LINK https://doi.org/10.1007/s00339-009-5360-6 [Google Scholar]
  40. S.-H. Park, W.-H. Chung, H.-S. Kim, J. Mater. Process. Technol., 2014, 214, (11), 2730 LINK https://doi.org/10.1016/j.jmatprotec.2014.06.007 [Google Scholar]
  41. D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh, Y. W. Song, J. Micromechanics Microengineering, 2011, 21, (12), 125023 LINK https://doi.org/10.1088/0960-1317/21/12/125023 [Google Scholar]
  42. S.-H. Park, H.-S. Kim, Thin Solid Films, 2014, 550, 575 LINK https://doi.org/10.1016/j.tsf.2013.11.075 [Google Scholar]
  43. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. M. Dmytruk, Phys. Rev. B, 2007, 75, (8), 085434 LINK https://doi.org/10.1103/PhysRevB.75.085434 [Google Scholar]
  44. Y. Galagan, E. W. C. Coenen, R. Abbel, T. J. Van Lammeren, S. Sabik, M. Barink, E. R. Meinders, R. Andriessen, P. W. M. Blom, Org. Electron., 2013, 14, (1), 38 LINK https://doi.org/10.1016/j.orgel.2012.10.012 [Google Scholar]
  45. Y.-T. Hwang, W.-H. Chung, Y.-R. Jang, H.-S. Kim, ACS Appl. Mater. Interfaces, 2016, 8, (13), 8591 LINK https://doi.org/10.1021/acsami.5b12516 [Google Scholar]
  46. D. Tobjörk, H. Aarnio, P. Pulkkinen, R. Bollström, A. Määttänen, P. Ihalainen, T. Mäkelä, J. Peltonen, M. Toivakka, H. Tenhu, R. Österbacka, Thin Solid Films, 2012, 520, (7), 2949 LINK https://doi.org/10.1016/j.tsf.2011.10.017 [Google Scholar]
  47. A. Denneulin, A. Blayo, C. Neuman, J. Bras, J. Nanoparticle Res., 2011, 13, (9), 3815 LINK https://doi.org/10.1007/s11051-011-0306-2 [Google Scholar]
  48. F. C. Krebs, R. Søndergaard, M. Jørgensen, Solar Energy Mater. Solar Cells, 2011, 95, (5), 1348 LINK https://doi.org/10.1016/j.solmat.2010.11.007 [Google Scholar]
  49. J. Troughton, M. J. Carnie, M. L. Davies, C. Charbonneau, E. H. Jewell, D. A. Worsley, T. M. Watson, J. Mater. Chem. A, 2016, 4, (9), 3471 LINK https://doi.org/10.1039/c5ta09431c [Google Scholar]
  50. J. Troughton, C. Charbonneau, M. J. Carnie, M. L. Davies, D. A. Worsley, T. M. Watson, J. Mater. Chem. A, 2015, 3, (17), 9123 LINK https://doi.org/10.1039/c5ta00568j [Google Scholar]
  51. B. W. Lavery, S. Kumari, H. Konermann, G. L. Draper, J. Spurgeon, T. Druffel, ACS Appl. Mater. Interfaces, 2016, 8, (13), 8419 LINK https://doi.org/10.1021/acsami.5b10166 [Google Scholar]
  52. S.-J. Potts, Y. C. Lau, T. Dunlop, T. Claypole, C. Phillips, J. Mater. Sci., 2019, 54, (11), 8163 LINK https://doi.org/10.1007/s10853-019-03462-3 [Google Scholar]
  53. K. E. A. Hooper, ‘Rapid Processing of Dye-Sensitised Solar Cells Using Near Infrared Radiative Heating’, PhD Thesis, Swansea University, UK, 2014 LINK https://cronfa.swan.ac.uk/Record/cronfa42730 [Google Scholar]
  54. R. Roy, D. Agrawal, J. Cheng, S. Gedevanlshvili, Nature, 1999, 399, (6737), 668 LINK https://doi.org/10.1038/21390 [Google Scholar]
  55. S.-H. Huang, C.-K. Guan, P.-H. Lee, H.-C. Huang, C.-F. Li, Y.-C. Huang, W.-F. Su, Adv. Energy Mater., 2020, 10, (37), 2001567 LINK https://doi.org/10.1002/aenm.202001567 [Google Scholar]
/content/journals/10.1595/205651322X16260797478755
Loading
/content/journals/10.1595/205651322X16260797478755
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test