Skip to content
1887
Volume 67, Issue 2
  • ISSN: 2056-5135

Abstract

The need to avoid health issues and pollution of the environment from the use of chemicals and synthetic materials inspires scientists to search for new biological compounds beneficial to human beings. Caves, being extreme environments, might be potential sources of these compounds. , one of the main groups that colonise these environments, are known to generate natural bioactive compounds. To investigate the potential uses of Parsık Cave , identification of this group of isolates and the investigation of their secreted biological compounds constituted the principal aim of the present study. The identification was achieved by sequencing 16S rRNA genes of 41 selected bacteria of which 28 species were identified as . (21%) and (14%) were the most identified genera. Antimicrobial effects of the isolates P1 and P16 were observed against standard microorganisms like . The gas chromatography-mass spectrometry (GC-MS) analysis of their broth showed compounds with known antimicrobial, antioxidant or anticancer properties as well as unknown compounds. Polyketide synthase (PKS) and non-ribosomal peptide synthases (NRPS) respectively were amplified in 32.1% and 53.5% of the identified while 25% were found to have both NRPS and PKS amplified. Amylase, gelatinase, cellulase, deoxyribonuclease (DNase), urease and casein hydrolysing activities were observed in the identified . These results show that from Parsık Cave might be good sources of industrial and biotechnological compounds. Furthermore, discovery of new bioactive compounds from these bacteria is promising due to the many unknown compounds observed in the GC-MS analysis and the high percentage of NRPS and PKS gene amplification.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16482034395036
2022-03-25
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/2/Rachid_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16482034395036&mimeType=html&fmt=ahah

References

  1. Bukelskis D., Dabkeviciene D., Lukoseviciute L., Bucelis A., Kriaučiūnas I., Lebedeva J., and Kuisiene N. Front. Microbiol., 2019, 10, 2149 LINK https://doi.org/10.3389/fmicb.2019.02149 [Google Scholar]
  2. Zada S., Sajjad W., Rafiq M., Ali S., Hu Z., Wang H., and Cai R. Microb. Ecol., 2021, 84, (3), 676 LINK https://doi.org/10.1007/s00248-021-01889-3 [Google Scholar]
  3. Cyske Z., Jaroszewicz W., Żabińska M., Lorenc P., Sochocka M., Bielańska P., Grabowski Ł., Gaffke L., Pierzynowska K., and Wȩgrzyn G. Acta Biochim. Polon., 2021, 68, (4), 565 LINK https://doi.org/10.18388/abp.2020_5887 [Google Scholar]
  4. Türkgenci M. D., and Doğruöz Güngör N. Geomicrobiol. J., 2021, 38, (9), 816 LINK https://doi.org/10.1080/01490451.2021.1964110 [Google Scholar]
  5. Barton H. A., and Jurado V. Microbe, 2007, 2, 132 LINK https://digital.csic.es/handle/10261/61951 [Google Scholar]
  6. Cheeptham N., ‘Advances and Challenges in Studying Cave Microbial Diversity’, in “Cave Microbiomes: A Novel Resource for Drug Discovery”, ed. and Cheeptham N. Springer Science+Business Media, New York, USA, 2013, pp. 134 LINK https://doi.org/10.1007/978-1-4614-5206-5_1 [Google Scholar]
  7. Castanier S., Le Méteyer-Levrel G., Perthuisot J.-P., and Awramik S. M. ‘Bacterial Roles in the Precipitation of Carbonate Minerals’, in “Microbial Sediments”, eds. Riding R. E., Springer-Verlag, Berlin, Germany, 2000, pp. 3239 LINK https://doi.org/10.1007/978-3-662-04036-2_5 [Google Scholar]
  8. Barton H. A., and Northup D. E. J. Cave KarstStud., 2007, 69, (1), 163 [Google Scholar]
  9. Tomova I., Lazarkevich I., Tomova A., Kambourova M., and Vasileva-Tonkova E. Int. J. Speleol., 2013, 42, (1), 65 LINK https://doi.org/10.5038/1827-806x.42.1.8 [Google Scholar]
  10. Tomczyk-Żak K., and Zielenkiewicz U. Geomicrobiol. J., 2016, 33, (1), 20 LINK https://doi.org/10.1080/01490451.2014.1003341 [Google Scholar]
  11. Çandiroğlu B., and Doğruöz Güngör N. Johnson Matthey Technol. Rev., 2020, 64, (4), 466 LINK https://technology.matthey.com/article/64/4/466-479/ [Google Scholar]
  12. Rangseekaew P., and Pathom-aree W. Front. Microbiol., 2019, 10, 387 LINK https://doi.org/10.3389/fmicb.2019.00387 [Google Scholar]
  13. Zada S., Xie J., Yang M., Yang X., Sajjad W., Rafiq M., Hasan F., Hu Z., and Wang H. Appl. Microbiol. Biotechnol., 2021, 105, (23), 8921 LINK https://doi.org/10.1007/s00253-021-11658-4 [Google Scholar]
  14. Nawani N., Aigle B., Mandal A., Bodas M., Ghorbel S., and Prakash D. BioMed Res. Int., 2013, 687190 LINK https://doi.org/10.1155/2013/687190 [Google Scholar]
  15. Axenov-Gibanov D. V., Voytsekhovskaya I. V., Tokovenko B. T., Protasov E. S., Gamaiunov S. V., Rebets Y. V., Luzhetskyy A. N., and Timofeyev M. A. PLoS One, 2016, 11, (2), e0149216 LINK https://doi.org/10.1371/journal.pone.0149216 [Google Scholar]
  16. Law J. W.-F., Letchumanan V., Tan L. T.-H., Ser H.-L., Goh B.-H., and Lee L.-H. Prog. Microbe. Mol. Biol., 2020, 3, (1), a0000064 LINK https://doi.org/10.36877/pmmb.a0000064 [Google Scholar]
  17. “Biotechnology of Antibiotics”, ed. Strohl W. R. 2nd Edn., CRC Press, Boca Raton, USA, 1997, 860 pp LINK https://doi.org/10.1201/9780367804558 [Google Scholar]
  18. Prakash D., Nawani N., Prakash M., Bodas M., Mandal A., Khetmalas M., and Kapadnis B. BioMed Res. Int., 2013, 264020 LINK https://doi.org/10.1155/2013/264020 [Google Scholar]
  19. Maciejewska M., Adam D., Naômé A., Martinet L., Tenconi E., Całusińska M., Delfosse P., Hanikenne M., Baurain D., Compère P., Carnol M., Barton H. A., and Rigali S. Front. Microbiol., 2017, 8, 1181 LINK https://doi.org/10.3389/fmicb.2017.01181 [Google Scholar]
  20. Ghosh S., Kuisiene N., and Cheeptham N. Biochem. Pharmacol., 2017, 134, 18 LINK https://doi.org/10.1016/j.bcp.2016.11.018 [Google Scholar]
  21. Amin D. H., Abdallah N. A., Abolmaaty A., Tolba S., and Wellington E. M. H. Bull. Natl. Res. Cent., 2020, 44, 5 LINK https://doi.org/10.1186/s42269-019-0266-8 [Google Scholar]
  22. Jiang S., Sun W., Chen M., Dai S., Zhang L., Liu Y., Lee K. J., and Li X. Antonie Van Leeuwenhoek, 2007, 92, (4), 405 LINK https://doi.org/10.1007/s10482-007-9169-z [Google Scholar]
  23. Amos G. C. A., Borsetto C., Laskaris P., Krsek M., Berry A. E., Newsham K. K., Calvo-Bado L., Pearce D. A., Vallin C., and Wellington E. M. H. PLoS One, 2015, 10, (9), e0138327 LINK https://doi.org/10.1371/journal.pone.0138327 [Google Scholar]
  24. Kuyukina M. S., Ivshina I. B., ‘Application of Rhodococcus in Bioremediation of Contaminated Environments’, in “Biology of Rhodococcus”, ed. and Alvarez H. M. Microbiology Monographs, Vol. 16, Springer-Verlag, Berlin, Germany, 2010, pp. 231262 LINK https://doi.org/10.1007/978-3-642-12937-7_9 [Google Scholar]
  25. Rodrigues E. M., Kalks K. H. M., and Tótola M. R. J. Environ. Manage., 2015, 156, 15 LINK https://doi.org/10.1016/j.jenvman.2015.03.016 [Google Scholar]
  26. Johnson A. R., and Carlson E. E. J. Am. Soc. Mass Spectrom., 2019, 30, (8), 1464 LINK https://doi.org/10.1007/s13361-019-02210-w [Google Scholar]
  27. Vézina C., Bolduc C., Kudelsk A., and Audet P. Antimicrob. Agents Chemother., 1979, 15, (5), 738 LINK https://doi.org/10.1128/aac.15.5.738 [Google Scholar]
  28. Waksman S. A., and Lechevalier H. A. Science, 1949, 109, (2830), 305 LINK https://doi.org/10.1126/science.109.2830.305 [Google Scholar]
  29. Pusparajah P., Letchumanan V., Law J.W.-F., Ab Mutalib N.-S., Ong Y. S., Goh B.-H., Tan L. T.-H., and Lee L.-H. Int. J. Mol. Sci., 2021, 22, (17), 9360 LINK https://doi.org/10.3390/ijms22179360 [Google Scholar]
  30. Jaroszewicz W., Bielańska P., Lubomska D., Kosznik-Kwaśnicka K., Golec P., Grabowski Ł., Wieczerzak E., Dróżdż W., Gaffke L., Pierzynowska K., Węgrzyn G., and Węgrzyn A. Antibiotics, 2021, 10, (10), 1212 LINK https://doi.org/10.3390/antibiotics10101212 [Google Scholar]
  31. Djebbah F. Z., Belyagoubi L., Abdelouahid D. E., Kherbouche F., Al-Dhabi N. A., Arasu M. V., and Ravindran B. J. Infect. Public Health, 2021, 14, (11), 1671 LINK https://doi.org/10.1016/j.jiph.2021.09.019 [Google Scholar]
  32. Quinn G. A., Banat A. M., Abdelhameed A. M., and Banat I. M. J. Med. Microbiol., 2020, 69, (8), 1040 LINK https://doi.org/10.1099/jmm.0.001232 [Google Scholar]
  33. Sharma P., Choudhary B., Nagpure A., and Gupta R. K. J. Environ. Biol., 2016, 37, (6), 1231 LINK https://doi.org/10.22438/jeb/37/6/mrn.1000 [Google Scholar]
  34. Ngai P. H. K., and Ng T. B. Peptides, 2004, 25, (12), 2063 LINK https://doi.org/10.1016/j.peptides.2004.08.003 [Google Scholar]
  35. Sanchez S., Rodríguez-Sanoja R., Ramos A., and Demain A. L. J. Antibiot., 2018, 71, (1), 26 LINK https://doi.org/10.1038/ja.2017.142 [Google Scholar]
  36. Salwan R., Sharma V., ‘’The Role of Actinobacteria in the Production of Industrial Enzymes’, in “New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications”, eds. Singh B. P., Gupta V. K., and Passari A. K. Elsevier BV, Amsterdam, The Netherlands, 2018, pp. 165177 LINK https://doi.org/10.1016/b978-0-444-63994-3.00011-4 [Google Scholar]
  37. Contesini F. J., de Melo R. R., and Sato H. H. Crit. Rev. Biotechnol., 2018, 38, (3), 321 LINK https://doi.org/10.1080/07388551.2017.1354354 [Google Scholar]
  38. Sharma A. K., Sharma V., Saxena J., Yadav B., Alam A., and Prakash A. Int. J. Sci. Res. Environ. Sci., 2015, 3, (9), 0334 [Google Scholar]
  39. Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., and Ashraf M. Front. Bioeng. Biotechnol., 2019, 7, 110 LINK https://doi.org/10.3389/fbioe.2019.00110 [Google Scholar]
  40. Singh M. Curr. Sci., 2019, 116, (11), 1840 LINK https://doi.org/10.18520/cs/v116/i11/1840-1849 [Google Scholar]
  41. Hamedi J., Kafshnouchi M., and Ranjbaran M. Saudi J. Biol. Sci., 2019, 26, (7), 1587 LINK https://doi.org/10.1016/j.sjbs.2018.10.010 [Google Scholar]
  42. Brown H. L., Reuter M., Hanman K., Betts R. P., and van Vliet A. H. M. PLoS One, 2015, 10, (3), e0121680 LINK https://doi.org/10.1371/journal.pone.0121680 [Google Scholar]
  43. de Melo Riceto É. B., de Paula Menezes R., Penatti M. P. A., and dos Santos Pedroso R. Rev. Iberoam. Micol., 2015, 32, (2), 79 LINK https://doi.org/10.1016/j.riam.2013.11.003 [Google Scholar]
  44. Behera B. C., Sethi B. K., Mishra R. R., Dutta S. K., and Thatoi H. N. J. Genet. Eng. Biotechnol., 2017, 15, (1), 197 LINK https://doi.org/10.1016/j.jgeb.2016.12.001 [Google Scholar]
  45. Gupta S. K., Kataki S., Chatterjee S., Prasad R. K., Datta S., Vairale M. G., Sharma S., Dwivedi S. K., and Gupta D. K. J. Clean. Prod., 2020, 258, 120351 LINK https://doi.org/10.1016/j.jclepro.2020.120351 [Google Scholar]
  46. Al-Dhabi N. A., Esmail G. A., Duraipandiyan V., and Arasu M. V. Saudi J. Biol. Sci., 2019, 26, (4), 758 LINK https://doi.org/10.1016/j.sjbs.2019.03.009 [Google Scholar]
  47. Al-Dhabi N. A., Esmail G. A., Ghilan A.-K. M., and Arasu M. V. Saudi J. Biol. Sci., 2020, 27, (1), 474 LINK https://doi.org/10.1016/j.sjbs.2019.11.011 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16482034395036
Loading
/content/journals/10.1595/205651322X16482034395036
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error