Skip to content
Volume 66, Issue 4
  • ISSN: 2056-5135


Traditional microbial synthesis of chemicals and fuels often rely on energy-rich feedstocks such as glucose, raising ethical concerns as they are directly competing with the food supply. Therefore, it is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or , by harnessing the metabolic processes of bacteria to valorise a range of waste products, including greenhouse gases (GHGs). However, the strict growth and nutrient requirements of industrially relevant bacteria, combined with low efficiencies of native extracellular electron transfer (EET) mechanisms, reduce the potential for industrial scalability. In this two-part work, we review the most significant advancements in techniques aimed at improving and modulating the efficiency of microbial EET, giving an objective and balanced view of current controversies surrounding the physiology of microbial electron transfer, alongside the methods used to wire microbial redox centres with the electrodes of bioelectrochemical systems conductive nanomaterials.


Article metrics loading...

Loading full text...

Full text loading...



  1. Schröder U. J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK [Google Scholar]
  2. Potter M. C. Proc. R. Soc. B: Biol. Sci, 1911, 84, (571), 260 LINK [Google Scholar]
  3. Su L., and Ajo-Franklin C. M. Curr. Opin. Biotechnol., 2019, 57, 66 LINK [Google Scholar]
  4. Krieg T., Sydow A., Faust S., Huth I., and Holtmann D. Angew. Chem. Int. Ed., 2018, 57, (7), 1879 LINK [Google Scholar]
  5. Clark M. M., Paxhia M. D., Young J. M., Manzella M. P., and Reguera G. Appl. Environ. Microbiol., 2021, 87, (20), e00964-21 LINK [Google Scholar]
  6. Mutuma B. K., Sylla N. F., Bubu A., Ndiaye N. M., Santoro C., Brilloni A., Poli F., Manyala N., and Soavi F. Electrochim. Acta, 2021, 391, 138960 LINK [Google Scholar]
  7. Tsekouras G. J., Deligianni P. M., Kanellos F. D., Kontargyri V. T., Kontaxis P. A., Manousakis N. M., and Elias C. N. Front. Energy Res., 2022, 10, 843768 LINK [Google Scholar]
  8. Lovley D. R., and Yao J. Trends Biotechnol., 2021, 39, (9), 940 LINK [Google Scholar]
  9. Lovley D. R. MBio, 2017, 8, (3), e00695-17 LINK [Google Scholar]
  10. Liu X., Jing X., Ye Y., Zhan J., Ye J., and Zhou S. Environ. Sci. Technol. Lett., 2020, 7, (1), 27 LINK [Google Scholar]
  11. Lovley D. R., and Holmes D. E. Nat. Rev. Microbiol., 2022, 20, (1), 5 LINK [Google Scholar]
  12. Yamasaki R., Maeda T., and Wood T. K. Biotechnol. Biofuels, 2018, 11, 211 LINK [Google Scholar]
  13. Gurumurthy D. M., Bharagava R. N., Kumar A., Singh B., Ashfaq M., Saratale G. D., and Mulla S. I. Microbiol. Res., 2019, 229, 126324 LINK [Google Scholar]
  14. Filman D. J., Marino S. F., Ward J. E., Yang L., Mester Z., Bullitt E., Lovley D. R., and Strauss M. Commun. Biol., 2019, 2, 219 LINK [Google Scholar]
  15. Jiang Y., Shi M., and Shi L. Sci. China Life Sci., 2019, 62, (10), 1275 LINK [Google Scholar]
  16. Wang F., Gu Y., O’Brien J. P., Yi S. M., Yalcin S. E., Srikanth V., Shen C., Vu D., Ing N. L., Hochbaum A. I., Egelman E. H., and Malvankar N. S. Cell, 2019, 177, (2), 361 LINK [Google Scholar]
  17. Su L., Fukushima T., Prior A., Baruch M., Zajdel T. J., and Ajo-Franklin C. M. ACS Synth. Biol., 2020, 9, (1), 115 LINK [Google Scholar]
  18. Feng J., Jiang M., Li K., Lu Q., Xu S., Wang X., Chen K., and Ouyang P. Bioelectrochemistry, 2020, 134, 107498 LINK [Google Scholar]
  19. Reardon P. N., and Mueller K. T. J. Biol. Chem., 2013, 288, (41), 29260 LINK [Google Scholar]
  20. Cosert K. M., Castro-Forero A., Steidl R. J., Worden R. M., and Reguera G. MBio, 2019, 10, (6), e02721-19 LINK [Google Scholar]
  21. Lovley D. R., and Walker D. J. F. Front. Microbiol., 2019, 10, 2078 LINK [Google Scholar]
  22. Rawson F. J., Gross A. J., Garrett D. J., Downard A. J., and Baronian K. H. R. Electrochem. Commun., 2012, 15, (1), 85 LINK [Google Scholar]
  23. Jeuken L. J. C., Hards K., and Nakatani Y. J. Bacteriol., 2020, 202, (7), e00029-20 LINK [Google Scholar]
  24. Shen W., Zhao X., Wang X., Yang S., Jia X., Yu X., Yang J., Yang Q., and Zhao H. Environ. Res., 2020, 185, 109463 LINK [Google Scholar]
  25. Schievano A., Sciarria T. P., Vanbroekhoven K., De Wever H., Puig S., Andersen S. J., Rabaey K., and Pant D. Trends Biotechnol., 2016, 34, (11), 866 LINK [Google Scholar]
  26. Yee M. O., Deutzmann J., Spormann A., and Rotaru A.-E. Nanotechnology, 2020, 31, (17), 174003 LINK [Google Scholar]
  27. Sánchez C., Dessì P., Duffy M., and Lens P. N. L. Biosens. Bioelectron., 2020, 150, 111884 LINK [Google Scholar]
  28. Logan B. E., and Rabaey K. Science, 2012, 337, (6095), 686 LINK [Google Scholar]
  29. Chen S., Patil S. A., Brown R. K., and Schröder U. Appl. Energy, 2019, 233234, 15 LINK [Google Scholar]
  30. Kalathil S., Katuri K. P., Alazmi A. S., Pedireddy S., Kornienko N., Costa P. M. F. J., and Saikaly P. E. Chem. Mater., 2019, 31, (10), 3686 LINK [Google Scholar]
  31. Bajracharya S., Sharma M., Mohanakrishna G., Benneton X. D., Strik D. P. B. T. B., Sarma P. M., and Pant D. Renew. Energy, 2016, 98, 153 LINK [Google Scholar]
  32. Li M., Zhou M., Tian X., Tan C., McDaniel C. T., Hassett D. J., and Gu T. Biotechnol. Adv., 2018, 36, (4), 1316 LINK [Google Scholar]
  33. Walter X. A., Merino-Jiménez I., Greenman J., and Ieropoulos I. J. Power Sources, 2018, 392, 150 LINK [Google Scholar]
  34. Radeef A. Y., and Ismail Z. Z. Bioelectrochemistry, 2021, 142, 107925 LINK [Google Scholar]
  35. Yu H., Li K., Cao Y., Zhu Y., Liu X., and Sun J. Energy Rep., 2022, 8, (6), 388 LINK [Google Scholar]
  36. Huang T., Song D., Liu L., and Zhang S. Sep. Purif. Technol., 2019, 215, 51 LINK [Google Scholar]
  37. Olias L. G., and Di Lorenzo M. RSC Adv., 2021, 11, (27), 16307 LINK [Google Scholar]
  38. Zhai J., and Dong S. Curr. Opin. Electrochem., 2022, 34, 100975 LINK [Google Scholar]
  39. Pasternak G., Greenman J., and Ieropoulos I. Sens. Actuators. B.: Chem., 2017, 244, 815 LINK [Google Scholar]
  40. Cohen B. J. Bacteriol., 1931, 21, (1), 18 [Google Scholar]
  41. Panich J., Fong B., and Singer S. W. Trends Biotechnol., 2021, 39, (4), 412 LINK [Google Scholar]
  42. Bai W., Ranaivoarisoa T. O., Singh R., Rengasamy K., and Bose A. Commun. Biol., 2021, 4, 1257 LINK [Google Scholar]
  43. Rabaey K., and Rozendal R. A. Nat. Rev. Microbiol., 2010, 8, (10), 706 LINK [Google Scholar]
  44. Prévoteau A., Carvajal-Arroyo J. M., Ganigué R., and Rabaey K. Curr. Opin. Biotechnol., 2020, 62, 48 LINK [Google Scholar]
  45. Zou L., Huang Y., Long Z., and Qiao Y. World J. Microbiol. Biotechnol., 2019, 35, (1), 9 LINK [Google Scholar]
  46. Zou L., Qiao Y., and Li C. M. Electrochem. Energy Rev., 2018, 1, (4), 567 LINK [Google Scholar]
  47. Zheng T., Li J., Ji Y., Zhang W., Fang Y., Xin F., Dong W., Wei P., Ma J., and Jiang M. Front. Bioeng. Biotechnol., 2020, 8, 10 LINK [Google Scholar]
  48. Ren H., Tian H., Gardner C. L., Ren T.-L., and Chae J. Nanoscale, 2016, 8, (6), 3539 LINK [Google Scholar]
  49. Geppert F., Liu D., Weidner E., and ter Heijne A. Int. J. Hydrogen Energy, 2019, 44, (39), 21464 LINK [Google Scholar]
  50. Bonanni P. S., Bradley D. F., Schrott G. D., and Busalmen J. P. ChemSusChem, 2013, 6, (4), 711 LINK [Google Scholar]
  51. Malvankar N. S., and Lovley D. R. Curr. Opin. Biotechnol., 2014, 27, 88 LINK [Google Scholar]
  52. Zhang P., Liu J., Qu Y., Zhang J., Zhong Y., and Feng Y. J. Power Sources, 2017, 361, 318 LINK [Google Scholar]
  53. Logan B. E., Rossi R., Ragab A., and Saikaly P. E. Nat. Rev. Microbiol., 2019, 17, (5), 307 LINK [Google Scholar]
  54. Pareek A., Sravan J. S., and Mohan S. V. Mater. Sci. Energy Technol., 2019, 2, (3), 600 LINK [Google Scholar]
  55. TerAvest M. A., and Ajo-Franklin C. M. Biotechnol. Bioeng., 2016, 113, (4), 687 LINK [Google Scholar]
  56. Hsu H.-L. H., Zhang Y., Deng P., Dai X., and Jiang X. Nano Lett., 2019, 19, (12), 8787 LINK [Google Scholar]
  57. Das S., Diels L., Pant D., Patil S. A., and Ghangrekar M. M. J. Electrochem. Soc., 2020, 167, (15), 155510 LINK [Google Scholar]
  58. Myers B., Hill P., Rawson F., and Kovács K. Johnson Matthey Technol. Rev., 2022, 66, (4), 455 LINK [Google Scholar]
  59. Logan B. E. Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK [Google Scholar]
  60. Hirose A., Kasai T., Aoki M., Umemura T., Watanabe K., and Kouzuma A. Nat. Commun., 2018, 9, 1083 LINK [Google Scholar]
  61. Jensen H. M., TerAvest M. A., Kokish M. G., and Ajo-Franklin C. M. ACS Synth. Biol., 2016, 5, (7), 679 LINK [Google Scholar]
  62. Smith A. F., Liu X., Woodard T. L., Fu T., Emrick T., Jiménez J. M., Lovley D. R., and Yao J. Nano Res., 2020, 13, (5), 1479 LINK [Google Scholar]
  63. Malvankar N. S., and Lovley D. R. ChemSusChem, 2012, 5, (6), 1039 LINK [Google Scholar]
  64. Tan Y., Adhikari R. Y., Malvankar N. S., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. MBio, 2017, 8, (1), e02203-16 LINK [Google Scholar]
  65. Ing N. L., El-Naggar M. Y., and Hochbaum A. I. J. Phys. Chem. B, 2018, 122, (46), 10403 LINK [Google Scholar]
  66. Martins M. V. A., Pereira A. R., Luz R. A. S., Iost R. M., and Crespilho F. N. Phys. Chem. Chem. Phys., 2014, 16, (33), 17426 LINK [Google Scholar]
  67. Yang Y., Wang Z., Gan C., Klausen L. H., Bonné R., Kong G., Luo D., Meert M., Zhu C., Sun G., Guo J., Ma Y., Bjerg J. T., Manca J., Xu M., Nielsen L. P., and Dong M. Nat. Commun., 2021, 12, 1709 LINK [Google Scholar]
  68. Doyle L. E., and Marsili E. Bioresour. Technol., 2018, 258, 354 LINK [Google Scholar]
  69. Gorby Y. A., Yanina S., McLean J. S., and Fredrickson J. K. Proc. Natl. Acad. Sci., 2006, 103, (30), 11358 LINK [Google Scholar]
  70. Rabaey K., Boon N., Siciliano S. D., Verhaege M., and Verstraete W. Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK [Google Scholar]
  71. Heydorn R. L., Engel C., Krull R., and Dohnt K. ChemBioEng Rev., 2020, 7, (1), 4 LINK [Google Scholar]
  72. Xiao Y., Zhang E., Zhang J., Dai Y., Yang Z., Christensen H. E. M., Ulstrup J., and Zhao F. Sci. Adv., 2017, 3, (7), e 1700623 LINK [Google Scholar]
  73. Glasser N. R., Saunders S. H., and Newman D. K. Annu. Rev. Microbiol., 2017, 71, 731 LINK [Google Scholar]
  74. Patil S. A., Hägerhäll C., and Gorton L. Bioanal. Rev., 2012, 4, (2–4), 159 LINK [Google Scholar]
  75. Shen H.-B., Yong X.-Y., Chen Y.-L., Liao Z.-H., Si R.-W., Zhou J., Wang S.-Y., Yong Y.-C., OuYang P.-K., and Zheng T. Bioresour. Technol., 2014, 167, 490 LINK [Google Scholar]
  76. Bennetto H. P., Delaney G. M., Mason J. R., Roller S. D., Stirling J. L., and Thurston C. F. Biotechnol. Lett., 1985, 7, (10), 699 LINK [Google Scholar]
  77. Schröder U. Phys. Chem. Chem. Phys., 2007, 9, (21), 2619 LINK [Google Scholar]
  78. Pankratova G., Hederstedt L., and Gorton L. Anal. Chim. Acta, 2019, 1076, 32 LINK [Google Scholar]
  79. Subramanian P., Pirbadian S., El-Naggar M. Y., and Jensen G. J. Proc. Natl. Acad. Sci., 2018, 115, (14), E 3246 LINK [Google Scholar]
  80. Pirbadian S., Barchinger S. E., Leung K. M., Byun H. S., Jangir Y., Bouhenni R. A., Reed S. B., Romine M. F., Saffarini D. A., Shi L., Gorby Y. A., Golbeck J. H., and El-Naggar M. Y. Proc. Natl. Acad. Sci., 2014, 111, (35), 12883 LINK [Google Scholar]
  81. Jeuken L. J. C. Environ. Microbiol., 2022, 24, (4), 1835 LINK [Google Scholar]
  82. Ross D. E., Flynn J. M., Baron D. B., Gralnick J. A., and Bond D. R. PLoS One, 2011, 6, (2), e 16649 LINK [Google Scholar]
  83. Cheng Z.-H., Xiong J.-R., Min D., Cheng L., Liu D.-F., Li W.-W., Jin F., Yang M., and Yu H.-Q. Biotechnol. Bioeng., 2020, 117, (5), 1294 LINK [Google Scholar]
  84. Rehnlund D., Lim G., Philipp L.-A., and Gescher J. iScience, 2022, 25, (2), 103853 LINK [Google Scholar]
  85. Wang Y., Lv M., Meng Q., Ding C., Jiang L., and Liu H. ACS Nano, 2016, 10, (6), 6331 LINK [Google Scholar]
  86. Chiranjeevi P., and Patil S. A. Biotechnol. Adv., 2020, 39, 107468 LINK [Google Scholar]
  87. Sun W., Lin Z., Yu Q., Cheng S., and Gao H. Front. Microbiol., 2021, 12, 727709 LINK [Google Scholar]
  88. La Cava E., Guionet A., Saito J., and Okamoto A. Electroanalysis, 2020, 32, (8), 1659 LINK [Google Scholar]
  89. Wu Z., Wang J., Liu J., Wang Y., Bi C., and Zhang X. Microb. Cell Fact., 2019, 18, 15 LINK [Google Scholar]
  90. Li Z., Chang W., Cui T., Xu D., Zhang D., Lou Y., Qian H., Song H., Mol A., Cao F., Gu T., and Li X. Commun. Mater., 2021, 2, 67 LINK [Google Scholar]
  91. Cao Y., Li X., Li F., and Song H. ACS Synth. Biol., 2017, 6, (9), 1679 LINK [Google Scholar]
  92. West E. A., Jain A., and Gralnick J. A. ACS Synth. Biol., 2017, 6, (9), 1627 LINK [Google Scholar]
  93. Yi Y.-C., and Ng I.-S. J. Taiwan Inst. Chem. Eng., 2020, 109, 8 LINK [Google Scholar]
  94. Corts A. D., Thomason L. C., Gill R. T., and Gralnick J. A. Sci. Rep., 2019, 9, 39 LINK [Google Scholar]
  95. Gescher J. S., Cordova C. D., and Spormann A. M. Mol. Microbiol., 2008, 68, (3), 706 LINK [Google Scholar]
  96. Schuetz B., Schicklberger M., Kuermann J., Spormann A. M., and Gescher J. Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK [Google Scholar]
  97. Sturm-Richter K., Golitsch F., Sturm G., Kipf E., Dittrich A., Beblawy S., Kerzenmacher S., and Gescher J. Bioresour. Technol., 2015, 186, 89 LINK [Google Scholar]
  98. Mayr J. C., Grosch J.-H., Hartmann L., Rosa L. F. M., Spiess A. C., and Harnisch F. ChemSusChem, 2019, 12, (8), 1631 LINK [Google Scholar]
  99. Ringeisen B. R., Henderson E., Wu P. K., Pietron J., Ray R., Little B., Biffinger J. C., and Jones-Meehan J. M. Environ. Technol., 2006, 40, (8), 2629 LINK [Google Scholar]
  100. Caccavo F., Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., and McInerney M. J. Appl. Environ. Microbiol., 1994, 60, (10), 3752 LINK [Google Scholar]
  101. Soussan L., Riess J., Erable B., Delia M.-L., and Bergel A. Electrochem. Commun., 2013, 28, 27 LINK [Google Scholar]
  102. Pous N., Carmona-Martínez A. A., Vilajeliu-Pons A., Fiset E., Bañeras L., Trably E., Balaguer M. D., Colprim J., Bernet N., and Puig S. Biosens. Bioelectron., 2016, 75, 352 LINK [Google Scholar]
  103. Ueki T., Nevin K. P., Woodard T. L., Aklujkar M. A., Holmes D. E., and Lovley D. R. Front. Microbiol., 2018, 9, 1512 LINK [Google Scholar]
  104. Reguera G., McCarthy K. D., Mehta T., Nicoll J. S., Tuominen M. T., and Lovley D. R. Nature, 2005, 435, (7045), 1098 LINK [Google Scholar]
  105. Richter L. V., Sandler S. J., and Weis R. M. J. Bacteriol., 2012, 194, (10), 2551 LINK [Google Scholar]
  106. Giltner C. L., Nguyen Y., and Burrows L. L. Microbiol. Mol. Biol. Rev., 2012, 76, (4), 740 LINK [Google Scholar]
  107. Weaver S. J., Ortega D. R., Sazinsky M. H., Dalia T. N., Dalia A. B., and Jensen G. J. Nat. Commun., 2020, 11, (1), 5080 LINK [Google Scholar]
  108. Kilmury S. L. N., and Burrows L. L. Proc. Natl. Acad., 2016, 113, (21), 6017 LINK [Google Scholar]
  109. Bardiaux B., de Amorim G. C., Luna Rico A., Zheng W., Guilvout I., Jollivet C., Nilges M., Egelman E. H., Izadi-Pruneyre N., and Francetic O. Structure, 2019, 27, (7), P 1082 LINK [Google Scholar]
  110. Malvankar N. S., Vargas M., Nevin K. P., Franks A. E., Leang C., Kim B.-C., Inoue K., Mester T., Covalla S. F., Johnson J. P., Rotello V. M., Tuominen M. T., and Lovley D. R. Nat. Nanotechnol., 2011, 6, (9), 573 LINK [Google Scholar]
  111. Walker D. J. F., Adhikari R. Y., Holmes D. E., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. ISME J., 2018, 12, (1), 48 LINK [Google Scholar]
  112. Walker D. J. F., Martz E., Holmes D. E., Zhou Z., Nonnenmann S. S., and Lovley D. R. MBio, 2019, 10, (2), e00579-19 LINK [Google Scholar]
  113. Vargas M., Malvankar N. S., Tremblay P.-L., Leang C., Smith J. A., Patel P., Snoeyenbos-West O., Nevin K. P., and Lovley D. R. MBio, 2013, 4, (2), e00105-13 LINK [Google Scholar]
  114. Tan Y., Adhikari R. Y., Malvankar N. S., Pi S., Ward J. E., Woodard T. L., Nevin K. P., Xia Q., Tuominen M. T., and Lovley D. R. Small, 2016, 12, (33), 4481 LINK [Google Scholar]
  115. Liu X., Tremblay P.-L., Malvankar N. S., Nevin K. P., Lovley D. R., and Vargas M. Appl. Environ. Microbiol., 2014, 80, (3), 1219 LINK [Google Scholar]
  116. Malvankar N. S., Tuominen M. T., and Lovley D. R. Energy Environ. Sci., 2012, 5, (9), 8651 LINK [Google Scholar]
  117. Adhikari R. Y., Malvankar N. S., Tuominen M. T., and Lovley D. R. RSC Adv., 2016, 6, (10), 8354 LINK [Google Scholar]
  118. Ing N. L., Nusca T. D., and Hochbaum A. I. Phys. Chem. Chem. Phys., 2017, 19, (32), 21791 LINK [Google Scholar]
  119. Lampa-Pastirk S., Veazey J. P., Walsh K. A., Feliciano G. T., Steidl R. J., Tessmer S. H., and Reguera G. Sci. Rep., 2016, 6, 23517 LINK [Google Scholar]
  120. Liu X., Wang S., Xu A., Zhang L., Liu H., and Ma L. Z. Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK [Google Scholar]
  121. Yalcin S. E., O’Brien J. P., Gu Y., Reiss K., Yi S. M., Jain R., Srikanth V., Dahl P. J., Huynh W., Vu D., Acharya A., Chaudhuri S., Varga T., Batista V. S., and Malvankar N. S. Nat. Chem. Biol., 2020, 16, (10), 1136 LINK [Google Scholar]
  122. Liu X., Walker D. J. F., Nonnenmann S. S., Sun D., and Lovley D. R. Mbio, 2021, 12, (4), e02209-21 LINK [Google Scholar]
  123. Yalcin S. E., and Malvankar N. S. Curr. Opin. Chem. Biol., 2020, 59, 193 LINK [Google Scholar]
  124. Ye Y., Liu X., Nealson K. H., Rensing C., Qin S., and Zhou S. MBio, 2022, 13, (1), e0382221-21 LINK [Google Scholar]
  125. Shapiro D. M., Mandava G., Yalcin S. E., Arranz-Gibert P., Dahl P. J., Shipps C., Gu Y., Srikanth V., Salazar-Morales A. I., O’Brien J. P., Vanderschuren K., Vu D., Batista V. S., Malvankar N. S., and Isaacs F. J. Nat. Commun., 2022, 13, 829 LINK [Google Scholar]
  126. Malvankar N. S., Yalcin S. E., Tuominen M. T., and Lovley D. R. Nat. Nanotechnol., 2014, 9, (12), 1012 LINK [Google Scholar]
  127. Cao D. X., Yan H., Brus V. V., Wong M. S., Bazan G. C., and Nguyen T.-Q. ACS Appl. Mater. Interfaces, 2020, 12, (36), 40778 LINK [Google Scholar]
  128. Krige A., Sjöblom M., Ramser K., Christakopoulos P., and Rova U. Molecules, 2019, 24, (3), 646 LINK [Google Scholar]
  129. Clarke T. A. Curr. Opin. Microbiol., 2022, 66, 56 LINK [Google Scholar]
  130. Tan Y., Adhikari R. Y., Malvankar N. S., Ward J. E., Nevin K. P., Woodard T. L., Smith J. A., Snoeyenbos-West O. L., Franks A. E., Tuominen M. T., and Lovley D. R. Front. Microbiol., 2016, 7, 980 LINK [Google Scholar]
  131. Zhao C., Wu J., Ding Y., Wang V. B., Zhang Y., Kjelleberg S., Loo C. J. S., Cao B., and Zhang Q. ChemElectroChem, 2015, 2, (5), 654 LINK [Google Scholar]
  132. Lovley D. R. Curr. Opin. Electrochem., 2017, 4, (1), 190 LINK [Google Scholar]
  133. Sure S., Ackland M. L., Torriero A. A. J., Adholeya A., and Kochar M. Microbiology, 2016, 162, (12), 2017 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error