Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

The propagation of ultrasonic waves in the hexagonal closed packed (hcp) structured lanthanide metal titanium has been investigated in the temperature range 300–1000 K. For this, initially the higher-order elastic constants (second-order elastic constants (SOECs) and third-order elastic constants (TOECs)) were computed using the Lennard-Jones interaction potential model. With the help of SOECs, other elastic moduli such as Young’s modulus (), bulk modulus (), shear modulus (), Poisson’s ratio (σ) and Pugh’s ratio () were computed using the Voigt-Reuss-Hill approximation. Three types of orientation-dependent ultrasonic velocities, including Debye average velocities, were evaluated using the calculated SOECs and density of titanium in the same temperature range. Thermophysical properties such as lattice thermal conductivity, thermal relaxation time, thermal energy density, specific heat at constant volume and acoustic coupling constant were evaluated under the same physical conditions. The ultrasonic attenuation due to phonon-phonon interaction is most significant under the chosen physical conditions. The ultrasonic properties of titanium are correlated with thermophysical properties to understand the microstructural features and nature of the material.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16653975448311
2022-10-10
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Singh1_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16653975448311&mimeType=html&fmt=ahah

References

  1. Y. Hao, J. Zhu, L. Zhang, J. Qu, H. Ren, Solid State Sci., 2010, 12, (8), 1473 LINK https://doi.org/10.1016/j.solidstatesciences.2010.06.010 [Google Scholar]
  2. H. L. Skriver, Phys. Rev. B, 1985, 31, (4), 1909 LINK https://doi.org/10.1103/physrevb.31.1909 [Google Scholar]
  3. T. Yamaguchi, H. Morishita, S. Iwase, S. Yamada, T. Furuta, T. Saito, SAE Technical Paper 2000-01-0905, SAE International, Warrendale, USA, 6th March, 2000 LINK https://saemobilus.sae.org/content/2000-01-0905/
  4. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng.: A, 1998, 243, (1–2), 244 LINK https://doi.org/10.1016/s0921-5093(97)00808-3 [Google Scholar]
  5. S. Mridha, T. N. Baker, Mater. Sci. Eng.: A, 1994, 188, (1–2), 229 LINK https://doi.org/10.1016/0921-5093(94)90376-x [Google Scholar]
  6. S. Ettaqi, V. Hays, J. J. Hantzpergue, G. Saindrenan, J. C. Remy, Surf. Coat. Technol., 1998, 100101, 428 LINK https://doi.org/10.1016/s0257-8972(97)00664-6 [Google Scholar]
  7. J. C. Jamieson, Science, 1963, 140, (3562), 72 LINK https://doi.org/10.1126/science.140.3562.72 [Google Scholar]
  8. M. I. Mendelev, T. L. Underwood, G. J. Ackland, J. Chem. Phys., 2016, 145, (15), 154102 LINK https://doi.org/10.1063/1.4964654 [Google Scholar]
  9. T. Hong, T. J. Watson-Yang, X.-Q. Guo, A. J. Freeman, T. Oguchi, J. Xu, Phys. Rev. B, 1991, 43, (3), 1940 LINK https://doi.org/10.1103/physrevb.43.1940 [Google Scholar]
  10. Y. D. Zhu, M. F. Yan, Y. X. Zhang, C. S. Zhang, Comput. Mater. Sci., 2016, 123, 70 LINK https://doi.org/10.1016/j.commatsci.2016.06.015 [Google Scholar]
  11. J. H. Tan, K. J. Zhu, J. H. Peng, Chin . J. Comput. Phys., 2017, 34, 365 [Google Scholar]
  12. Y. Jian, Z. Huang, J. Xing, L. Sun, Y. Liu, P. Gao, Mater. Chem. Phys., 2019, 221, 311 LINK https://doi.org/10.1016/j.matchemphys.2018.09.055 [Google Scholar]
  13. L. Liu, Z.-Q. Wang, C.-E. Hu, Y. Cheng, G.-F. Ji, Solid State Commun., 2017, 263, 10 LINK https://doi.org/10.1016/j.ssc.2017.06.011 [Google Scholar]
  14. S. L. Shang, D. E. Kim, C. L. Zacherl, Y. Wang, Y. Du, Z. K. Liu, J. Appl. Phys., 2012, 112, (5), 053515 LINK https://doi.org/10.1063/1.4749406 [Google Scholar]
  15. X. Wu, L. Liu, W. Li, R. Wang, Q. Liu, Comput. Condens. Matter, 2014, 1, 38 LINK https://doi.org/10.1016/j.cocom.2014.10.005 [Google Scholar]
  16. F. Luo, Z.-C. Guo, X.-L. Zhang, C.-Y. Yuan, L.-C. Cai, Philos. Mag. Lett., 2015, 95, (4), 211 LINK https://doi.org/10.1080/09500839.2015.1031846 [Google Scholar]
  17. M. Destefanis, C. Ravoux, A. Cossard, A. Erba, Minerals, 2019, 9, (1), 16 LINK https://doi.org/10.3390/min9010016 [Google Scholar]
  18. Z.-L. Liu, J.-H. Yang, L.-C. Cai, F.-Q. Jing, D. Alfè, Phys. Rev. B, 2011, 83, (14), 144113 LINK https://doi.org/10.1103/physrevb.83.144113 [Google Scholar]
  19. S.-L. Shang, H. Zhang, Y. Wang, Z.-K. Liu, J. Phys.: Condens. Matter, 2010, 22, (37), 375403 LINK https://doi.org/10.1088/0953-8984/22/37/375403 [Google Scholar]
  20. Y. Wang, J. J. Wang, H. Zhang, V. R. Manga, S. L. Shang, L.-Q. Chen, Z.-K. Liu, J. Phys.: Condens. Matter, 2010, 22, (22), 225404 LINK https://doi.org/10.1088/0953-8984/22/22/225404 [Google Scholar]
  21. P.A.T. Olsson, Comput. Mater. Sci., 2015, 99, 361 LINK https://doi.org/10.1016/j.commatsci.2015.01.005 [Google Scholar]
  22. D. Dragoni, D. Ceresoli, N. Marzari, Phys. Rev. B, 2015, 91, (10), 104105 LINK https://doi.org/10.1103/physrevb.91.104105 [Google Scholar]
  23. Y. Xie, K. Peng, X. Yang, J. Cent. South Univ. Tech., 2001,8, (2), 83 LINK https://doi.org/10.1007/s11771-001-0031-6 [Google Scholar]
  24. H. Xia, G. Parthasarathy, H. Luo, Y. K. Vohra, A. L. Ruoff, Phys. Rev. B, 1990, 42, (10), 6736 LINK https://doi.org/10.1103/physrevb.42.6736 [Google Scholar]
  25. E. S. Fisher, C. J. Renken, Phys. Rev., 1964, 135, (2A), A482 LINK https://doi.org/10.1103/physrev.135.a482 [Google Scholar]
  26. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, Phys. Rev. B, 2004, 70, (17), 174113 LINK https://doi.org/10.1103/physrevb.70.174113 [Google Scholar]
  27. Y. Song, R. Yang, D. Li, Z. Hu, Z. Guo, J. Comput.-Aided Mater. Des., 1999, 6, (2–3), 355 LINK https://doi.org/10.1023/a:1008762206967 [Google Scholar]
  28. Y. Song, R. Yang, Z.-X. Guo, Mater. Trans., 2002, 43, (12), 3028 LINK https://doi.org/10.2320/matertrans.43.3028 [Google Scholar]
  29. Y. Song, Z. X. Guo, R. Yang, Phil. Mag. A, 2002, 82, (7), 1345 LINK https://doi.org/10.1080/01418610208235676 [Google Scholar]
  30. U. Argaman, G. Makov, Comput. Mater. Sci., 2020, 184, 109917 LINK https://doi.org/10.1016/j.commatsci.2020.109917 [Google Scholar]
  31. O. I. Lobkis, S. I. Rokhlin, Appl. Phys. Lett., 2010, 96, (16), 161905 LINK https://doi.org/10.1063/1.3416910 [Google Scholar]
  32. T. B. Britton, H. Liang, F.P.E. Dunne, A. J. Wilkinson, Proc. R. Soc. A, 2010, 466, (2115), 695 LINK https://doi.org/10.1098/rspa.2009.0455 [Google Scholar]
  33. J. Kwon, M. C. Brandes, P. Sudharshan Phani, A. P. Pilchak, Y. F. Gao, E. P. George, G. M. Pharr, M. J. Mills, Acta Mater., 2013, 61, (13), 4743 LINK https://doi.org/10.1016/j.actamat.2013.05.005 [Google Scholar]
  34. K. W. Siu, A.H.W. Ngan, I. P. Jones, Int. J. Plast., 2011, 27, (5), 788 LINK https://doi.org/10.1016/j.ijplas.2010.09.007 [Google Scholar]
  35. Y.-M. Kim, B.-J. Lee, M. I. Baskes, Phys. Rev. B, 2006, 74, (1), 014101 LINK https://doi.org/10.1103/physrevb.74.014101 [Google Scholar]
  36. Y. Zhang, Y. Zhao, H. Hou, Z. Wen, M. Duan, Mater. Res. Express, 2018, 5, (2), 026527 LINK https://doi.org/10.1088/2053-1591/aaaf7d [Google Scholar]
  37. J. Spreadborough, J. W. Christian, Proc. Phys. Soc., 1959, 74, (5), 609 LINK https://doi.org/10.1088/0370-1328/74/5/314 [Google Scholar]
  38. M. Tane, Y. Okuda, Y. Todaka, H. Ogi, A. Nagakubo, Acta Mater., 2013, 61, (20), 7543 LINK https://doi.org/10.1016/j.actamat.2013.08.036 [Google Scholar]
  39. S. P. Singh, G. Singh, A. K. Verma, A. K. Jaiswal, R. R. Yadav, Met. Mater. Int., 2021, 27, (8), 2541 LINK https://doi.org/10.1007/s12540-020-00633-9 [Google Scholar]
  40. D. K. Pandey, D. Singh, R. R. Yadav, Appl. Acoust., 2007, 68, (7), 766 LINK https://doi.org/10.1016/j.apacoust.2006.04.004 [Google Scholar]
  41. C. P. Yadav, D. K. Pandey, D. Singh, Indian J. Phys., 2019, 93, (9), 1147 LINK https://doi.org/10.1007/s12648-019-01389-8 [Google Scholar]
  42. N. Yadav, S. P. Singh, A. K. Maddheshiya, P. K. Yadawa, R. R. Yadav, Phase Trans., 2020, 93, (9), 883 LINK https://doi.org/10.1080/01411594.2020.1813290 [Google Scholar]
  43. W. P. Mason, T. B. Bateman, J. Acoust. Soc. Am., 1966, 40, (4), 852 LINK https://doi.org/10.1121/1.1910158 [Google Scholar]
  44. S. K. Verma, R. R. Yadav, A. K. Yadav, B. Joshi, Mater. Lett., 2010, 64, (15), 1677 LINK https://doi.org/10.1016/j.matlet.2010.04.063 [Google Scholar]
  45. S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, R. R. Yadav, Pramana, 2019, 93, (5), 83 LINK https://doi.org/10.1007/s12043-019-1846-8 [Google Scholar]
  46. K. Brugger, Phys. Rev., 1964, 133, (6A), A1611 LINK https://doi.org/10.1103/physrev.133.a1611 [Google Scholar]
  47. P. K. Dhawan, M. Wan, S. K. Verma, D. K. Pandey, R. R. Yadav, J. Appl. Phys., 2015, 117, (7), 074307 LINK https://doi.org/10.1063/1.4913289 [Google Scholar]
  48. D. T. Morelli, G. A. Slack, ‘High Lattice Thermal Conductivity Solids’, in “High Thermal Conductivity Materials”, eds. S.L. Shindé, J. S. Goela, Springer Science and Business Media Inc, New York, USA, 2006, pp. 3768 LINK https://doi.org/10.1007/0-387-25100-6_2 [Google Scholar]
  49. D. K. Pandey, P. K. Yadawa, R. R. Yadav, Mater. Lett., 2007, 61, (30), 5194 LINK https://doi.org/10.1016/j.matlet.2007.04.028 [Google Scholar]
  50. D. Singh, D. K. Pandey, D. K. Singh, R. R. Yadav, Appl. Acoust., 2011, 72, (10), 737 LINK https://doi.org/10.1016/j.apacoust.2011.04.002 [Google Scholar]
  51. H. Ogi, S. Kai, H. Ledbetter, R. Tarumi, M. Hirao, K. Takashima, Acta Mater., 2004, 52, (7), 2075 LINK https://doi.org/10.1016/j.actamat.2004.01.002 [Google Scholar]
  52. N. Turkdal, E. Deligoz, H. Ozisik, H. B. Ozisik, Phase Trans., 2017, 90, (6), 598 LINK https://doi.org/10.1080/01411594.2016.1252979 [Google Scholar]
  53. R. R. Rao, A. Rajput, Phys. Rev. B, 1979, 19, (6), 3323 LINK https://doi.org/10.1103/physrevb.19.3323 [Google Scholar]
  54. R. R. Rao, A. Rajput, Phil. Mag. A, 1979, 40, (6), 769 LINK https://doi.org/10.1080/01418617908234873 [Google Scholar]
  55. S. P. Singh, P. K. Yadawa, P. K. Dhawan, A. K. Verma, R. R. Yadav, Cryogenics, 2019, 100, 105 LINK https://doi.org/10.1016/j.cryogenics.2019.03.006 [Google Scholar]
  56. D. E. Gray, “American Institute of Physics Handbook”, 3rd Edn., McGraw-Hill, New York, USA, 1956, p. 44 [Google Scholar]
  57. Y. Takahashi, M. Yamawaki, K. Yamamoto, J. Nucl. Mater., 1988, 154, (1), 141 LINK https://doi.org/10.1016/0022-3115(88)90127-4 [Google Scholar]
  58. D. K. Pandey, D. Singh, R. R. Yadav, Appl. Acoust., 2007, 68, (7), 766 LINK https://doi.org/10.1016/j.apacoust.2006.04.004 [Google Scholar]
  59. A. K. Yadav, P. K. Yadawa, R. R. Yadav, D. K. Pandey, J. Acoust. Soc. India, 2005, 33, 193 [Google Scholar]
  60. P. K. Yadawa, D. K. Pandey, R. R. Yadav, J. Acoust. Soc. India, 2005, 33, 186 [Google Scholar]
  61. D. Singh, D. K. Pandey, P. K. Yadawa, Cent. Eur. J. Phys., 2009, 7, (1), 198 LINK https://doi.org/10.2478/s11534-008-0130-1 [Google Scholar]
/content/journals/10.1595/205651323X16653975448311
Loading
/content/journals/10.1595/205651323X16653975448311
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test