Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


Globally, transport is responsible for 23% of energy-related carbon dioxide emissions and 80% of these emissions are attributable to road transport. Significant transformations, including extensive electrification of the sector, are necessary to achieve climate change goals. To understand new energy vehicle (NEV) policy research, we explore the status, knowledge base and research frontiers of NEV policy research by studying 355 papers collected from the Web of Science™ (WoS) Core Collection database. We map NEV policy research trends and knowledge structure development using knowledge domain technology and bibliometric techniques. The knowledge base analysis shows that: (a) NEV policy formation and evaluation; (b) policy incentives and consumer adoption; and (c) consumer preferences towards NEV adoption are all essential knowledge foundations in NEV policy research and development (R&D). The efficiency of NEV policy, cost-effectiveness of alternative fuel vehicles (AFVs), consumer preferences for NEV adoption, hydrogen energy and fuel cell vehicles, climate policy and CO emissions are five main lines of research in NEV policy studies. With the highest number of publications from Tsinghua University, China is the most active country in NEV policy research. , and are the core journals and Energy and Fuels and Environmental Sciences are the core disciplines of NEV policy research. The findings of this analysis help policymakers and researchers to navigate the literature on NEV, provide a clear map of existing works, identify the gaps and recommend promising avenues for future studies.


Article metrics loading...

Loading full text...

Full text loading...



  1. Tiseo I. ‘Carbon Dioxide Emissions from the Transportation Sector Worldwide from 1970 to 2022: Global Transport CO₂ Emissions 1970–2021’, Statista Inc, New York, USA, September, 2023 LINK [Google Scholar]
  2. Li J., Ku Y., Liu C., and Zhou Y. J. Clean. Prod., 2020, 243, 118456 LINK [Google Scholar]
  3. Wang H., Liu H., Yao J., Ye D., Lang Z., and Glowacz A. J. Energy Storage, 2021, 35, 102275 LINK [Google Scholar]
  4. Wang Y., Yi Y., Fu C., and Li Y. Manag. Decis. Econ., 2023, 44, (4), 2278 LINK [Google Scholar]
  5. “Sustainability Report and Implementation Plan 2019”, Environmental Protection Agency, Washington, DC, USA, 2019, 12 pp LINK [Google Scholar]
  6. Li Y., Zhang Q., Tang Y., Mclellan B., Ye H., Shimoda H., and Ishihara K. J. Clean. Prod., 2020, 249, 119384 LINK [Google Scholar]
  7. Lu C., Wang Q., Zhao M., and Yan J. Chin. J. Manag. Sci.., 2022, 30, (1), 64 LINK [Google Scholar]
  8. “World Energy Outlook 2020”, International Energy Agency, Paris, France, October, 2020, 464 pp LINK [Google Scholar]
  9. Wang X., Huang L., Daim T., Li X., and Li Z. Technol. Soc., 2021, 67, 101770 LINK [Google Scholar]
  10. Davies H. Johnson Matthey Technol. Rev., 2020, 64, (3), 252 LINK [Google Scholar]
  11. Nanaki E. A., Kiartzis S., and Xydis G. A. Policy Stud., 2022, 43, (2), 370 LINK [Google Scholar]
  12. Craglia M., and Cullen J. Transp. Res. Part D: Transp. Environ., 2020, 89, 102614 LINK [Google Scholar]
  13. Isik M., Dodder R., and Kaplan P. O. Nat. Energy, 2021, 6, (1), 92 LINK [Google Scholar]
  14. Lam A., and Mercure J.-F. Energy Res. Soc. Sci, 2021, 75, 101951 LINK [Google Scholar]
  15. Tan X.-C., Zeng Y., Gu B.-H., Tang J., Wang D., and Guo J.-X. Adv. Clim. Chang. Res., 2020, 11, (4), 429 LINK [Google Scholar]
  16. Dijk M., Iversen E., Klitkou A., Kemp R., Bolwig S., Borup M., and Møllgaard P. Energies, 2020, 13, (2), 475 LINK [Google Scholar]
  17. Qiu L.-S., Yang D.-X., Hong K.-R., Wu W.-P., and Zeng W.-K. Front. Energy Res., 2021, 9, 661585 LINK [Google Scholar]
  18. Eshraghi H., Queiroz de A. R., and DeCarolis J. F. Environ. Sci. Technol., 2018, 52, (17), 9595 LINK [Google Scholar]
  19. Moher D., Liberati A., Tetzlaff J., and Altman D. G. PRISMA Group, Ann. Intern. Med., 2009, 151, (4), 264 LINK [Google Scholar]
  20. Murgado-Armenteros E. M., Gutiérrez-Salcedo M., Torres-Ruiz F. J., and Cobo M. J. Scientometrics, 2015, 102, (1), 519 LINK [Google Scholar]
  21. Khan A., Hassan M. K., Paltrinieri A., Dreassi A., and Bahoo S. Int. Rev. Econ. Fin., 2020, 69, 389 LINK [Google Scholar]
  22. Zhang L., and Qin Q. Transp. Res. Part A: Policy Pract., 2018, 110, 57 LINK [Google Scholar]
  23. Li J., Jiao J., Xu Y., and Chen C. Sustain. Prod. Consum, 2021, 28, 637 LINK [Google Scholar]
  24. Peng L., Li Y., and Yu H. Sustainability, 2021, 13, (11), 5821 LINK [Google Scholar]
  25. Jenn A., Azevedo I. L., and Ferreira P. Energy Econ, 2013, 40, 936 LINK [Google Scholar]
  26. Jenn A., Azevedo I. L., and Michalek J. J. Transp. Res. Part A: Policy Pract., 2019, 124, 396 LINK [Google Scholar]
  27. Zhu X., Ren M., Wu G., Pei J., and Pardalos P. M. Comput. Ind. Eng., 2019, 135, 211 LINK [Google Scholar]
  28. ÓhAiseadha C., Quinn G., Connolly R., Connolly M., and Soon W. Energies, 2020, 13, (18), 4839 LINK [Google Scholar]
  29. Perez L., Trüeb S., Cowie H., Keuken M. P., Mudu P., Ragettli M. S., Sarigiannis D. A., Tobollik M., Tuomisto J., Vienneau D., Sabel C., and Künzli N. Environ. Int., 2015, 85, 111 LINK [Google Scholar]
  30. Sabel C. E., Hiscock R., Asikainen A., Bi J., Depledge M., van den Elshout S., Friedrich R., Huang G., Hurley F., Jantunen M., Karakitsios S. P., Keuken M., Kingham S., Kontoroupis P., Kuenzli N., Liu M., Martuzzi M., Morton K., Mudu P., Niittynen M., Perez L., Sarigiannis D., Stahl-Timmins W., Tobollik M., Tuomisto J., and Willers S. Environ. Heal., 2016, 15, S25 LINK [Google Scholar]
  31. Jiang C., Zhang Y., Bu M., and Liu W. Sustainability, 2018, 10, (6), 1692 LINK [Google Scholar]
  32. Tsoi K. H., Loo B. P. Y., and Banister D. Glob. Environ. Chang., 2021, 68, 102250 LINK [Google Scholar]
  33. Audoly R., Vogt-Schilb A., Guivarch C., and Pfeiffer A. Appl. Energy, 2018, 225, 884 LINK [Google Scholar]
  34. Wachtmeister M. J. Environ. Dev., 2013, 22, (3), 284 LINK [Google Scholar]
  35. Whitmarsh L., and Köhler J. Cambridge J. Reg. Econ. Soc., 2010, 3, (3), 427 LINK [Google Scholar]
  36. Zheng B., Zhang Q., Borken-Kleefeld J., Huo H., Guan D., Klimont Z., Peters G. P., and He K. Appl. Energy, 2015, 156, 230 LINK [Google Scholar]
  37. Newman M. E. J. Phys. Rev. E, 2001, 64, (1), 016132 LINK [Google Scholar]
  38. Newman M. E. J. Proc. Natl. Acad. Sci., 2004, 101, (1), 5200 LINK [Google Scholar]
  39. Hjørland B. J. Document., 1992, 48, (2), 172 LINK [Google Scholar]
  40. Romm J. Energy Policy, 2006, 34, (17), 2609 LINK [Google Scholar]
  41. Kyriakopoulos G. L., and Arabatzis G. Renew. Sustain. Energy Rev., 2016, 56, 1044 LINK [Google Scholar]
  42. Hanley E. S., Deane J. P., and Gallachóir B. P. Ó. Renew. Sustain. Energy Rev., 2018, 82, (3), 3027 LINK [Google Scholar]
  43. Contestabile M., Offer G. J., Slade R., Jaeger F., and Thoennes M. Energy Environ. Sci., 2011, 4, (10), 3754 LINK [Google Scholar]
  44. Chandra A., Gulati S., and Kandlikar M. J. Environ. Econ. Manage., 2010, 60, (2), 78 LINK [Google Scholar]
  45. Morrow W. R., Gallagher K. S., Collantes G., and Lee H. Energy Policy, 2010, 38, (3), 1305 LINK [Google Scholar]
  46. Du J., and Ouyang D. Appl. Energy, 2017, 188, 529 LINK [Google Scholar]
  47. Gong H., Wang M. Q., and Wang H. Mitig. Adapt. Strateg. Glob. Chang., 2013, 18, (2), 207 LINK [Google Scholar]
  48. Zhou Y., Wang M., Hao H., Johnson L., Wang H., and Hao H. Mitig. Adapt. Strateg. Glob. Chang., 2015, 20, (5), 777 LINK [Google Scholar]
  49. Pietzcker R. C., Longden T., Chen W., Fu S., Kriegler E., Kyle P., and Luderer G. Energy, 2014, 64, 95 LINK [Google Scholar]
  50. Jeong Y. K., Song M., and Ding Y. J. Informetr., 2014, 8, (1), 197 LINK [Google Scholar]
  51. Surwase G., Sagar A., Kademani B. S., and Bhanumurthy K. ‘Co-Citation Analysis: An Overview’, Beyond Librarianship: Creativity, Innovation and Discovery, BOSLA National Conference, Mumbai, India, 16th–17th September, 2011, Bombay Science Librarians’ Association, Mumbai, India, 2011, pp. 180185 LINK [Google Scholar]
  52. Zhang Y., Hou Z., Yang F., Yang M. M., and Wang Z. J. Bus. Res., 2021, 137, 500 LINK [Google Scholar]
  53. Tsai W., and Wu C.-H. Acad. Manag. J., 2010, 53, (3), 441 LINK [Google Scholar]
  54. Sierzchula W., Bakker S., Maat K., and van Wee B. Energy Policy, 2014, 68, 183 LINK [Google Scholar]
  55. Diamond D. Energy Policy, 2009, 37, (3), 972 LINK [Google Scholar]
  56. Gallagher K. S., and Muehlegger E. J. Environ. Econ. Manage., 2011, 61, (1), 1 LINK [Google Scholar]
  57. Hao H., Ou X., Du J., Wang H., and Ouyang M. Energy Policy, 2014, 73, 722 LINK [Google Scholar]
  58. Zhang X., and Bai X. Renew. Sustain. Energy Rev., 2017, 70, 24 LINK [Google Scholar]
  59. Yuan X., Liu X., and Zuo J. Renew. Sustain. Energy Rev., 2015, 42, 298 LINK [Google Scholar]
  60. Helveston J. P., Liu Y., Feit E. M., Fuchs E., Klampfl E., and Michalek J. J. Transp. Res. Part A: Policy Pract., 2015, 73, 96 LINK [Google Scholar]
  61. Jansson J., and Rezvani Z. Energy Res. Soc. Sci., 2019, 48, 13 LINK [Google Scholar]
  62. Zhang X., Wang K., Hao Y., Fan J.-L., and Wei Y.-M. Energy Policy, 2013, 61, 382 LINK [Google Scholar]
  63. McCain K. W. Scientometrics, 1998, 41, (3), 389 LINK [Google Scholar]
  64. Anwar A., Sharif A., Fatima S., Ahmad P., Sinha A., Khan S. A. R., and Jermsittiparsert K. J. Clean. Prod., 2021, 288, 125282 LINK [Google Scholar]
  65. Zhang L., Wang L., and Chai J. J. Clean. Prod., 2020, 275, 124069 LINK [Google Scholar]
  66. Kok R. Transp. Res. Part A: Policy Pract., 2015, 77, 137 LINK [Google Scholar]
  67. Dong F., and Zheng L. Environ. Sci. Pollut. Res., 2022, 29, (4), 5863 LINK [Google Scholar]
  68. Liu X., Sun X., Zheng H., and Huang D. Transp. Res. Part A: Policy Pract., 2021, 150, 49 LINK [Google Scholar]
  69. Gong S., Ardeshiri A., and Hossein Rashidi T. Transp. Res. Part D: Transp. Environ., 2020, 83, 102353 LINK [Google Scholar]
  70. Wolf I., Schröder T., Neumann J., and de Haan G. Technol. Forecast. Soc. Change, 2015, 94, 269 LINK [Google Scholar]
  71. Lopez-Arboleda E., Sarmiento A. T., and Cardenas L. M. Sys. Pract. Act. Res., 2020, 34, (4), 399 LINK [Google Scholar]
  72. Higueras-Castillo E., Guillén A., Herrera L.-J., and Liébana-Cabanillas F. Int. J. Sustain. Transp., 2021, 15, (10), 799 LINK [Google Scholar]
  73. Zimm C. Transp. Pol., 2021, 105, 54 LINK [Google Scholar]
  74. Mohammed L., Niesten E., and Gagliardi D. Transp. Res. Part D: Transp. Environ., 2020, 88, 102558 LINK [Google Scholar]
  75. Luo T., Tan Y., Langston C., and Xue X. Energy Build., 2019, 194, 163 LINK [Google Scholar]
  76. Zhang W., Yoshida T., and Tang X. Expert Syst. Appl., 2011, 38, (3), 2758 LINK [Google Scholar]
  77. Li X., Wu P., Shen G. Q., Wang X., and Teng Y. Autom. Constr., 2017, 84, 195 LINK [Google Scholar]
  78. Meng S., and Xiong D. Trop. Conserv. Sci., 2018, 11 LINK [Google Scholar]
  79. Lou G., Ma H., Fan T., and Chan H. K. Resour. Conserv. Recycl., 2020, 156, 104712 LINK [Google Scholar]
  80. Liu W., and Yi H. Int. J. Environ. Res. Public Health, 2020, 17, (3), 726 LINK [Google Scholar]
  81. Zhou N., Wu Q., and Hu X. Sustainability, 2020, 12, (9), 3629 LINK [Google Scholar]
  82. Hu J.-W., Javaid A., and Creutzig F. Energy Policy, 2021, 155, 112349 LINK [Google Scholar]
  83. Li J., Zhou Y., Yu D., and Liu C. Sustainability, 2020, 12, (5), 1711 LINK [Google Scholar]
  84. Kim K., Lee J., and Kim J. Energy Policy, 2021, 154, 112311 LINK [Google Scholar]
  85. Li Y., and Taghizadeh-Hesary F. Energy Policy, 2022, 160, 112703 LINK [Google Scholar]
  86. Ferraren-De Cagalitan D. D. T., and Abundo M. L. S. Renew. Sustain. Energy Rev., 2021, 151, 111413 LINK [Google Scholar]
  87. Yin Y., and Liu F. Complexity, 2021, 3720373 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error