Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Globally, transport is responsible for 23% of energy-related carbon dioxide emissions and 80% of these emissions are attributable to road transport. Significant transformations, including extensive electrification of the sector, are necessary to achieve climate change goals. To understand new energy vehicle (NEV) policy research, we explore the status, knowledge base and research frontiers of NEV policy research by studying 355 papers collected from the Web of Science™ (WoS) Core Collection database. We map NEV policy research trends and knowledge structure development using knowledge domain technology and bibliometric techniques. The knowledge base analysis shows that: (a) NEV policy formation and evaluation; (b) policy incentives and consumer adoption; and (c) consumer preferences towards NEV adoption are all essential knowledge foundations in NEV policy research and development (R&D). The efficiency of NEV policy, cost-effectiveness of alternative fuel vehicles (AFVs), consumer preferences for NEV adoption, hydrogen energy and fuel cell vehicles, climate policy and CO emissions are five main lines of research in NEV policy studies. With the highest number of publications from Tsinghua University, China is the most active country in NEV policy research. , and are the core journals and Energy and Fuels and Environmental Sciences are the core disciplines of NEV policy research. The findings of this analysis help policymakers and researchers to navigate the literature on NEV, provide a clear map of existing works, identify the gaps and recommend promising avenues for future studies.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16873481731553
2023-06-21
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Shaikh_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16873481731553&mimeType=html&fmt=ahah

References

  1. I. Tiseo, ‘Carbon Dioxide Emissions from the Transportation Sector Worldwide from 1970 to 2022: Global Transport CO₂ Emissions 1970–2021’, Statista Inc, New York, USA, September, 2023 LINK https://www.statista.com/statistics/1291615/carbon-dioxide-emissions-transport-sector-worldwide/ [Google Scholar]
  2. J. Li, Y. Ku, C. Liu, Y. Zhou, J. Clean. Prod., 2020, 243, 118456 LINK https://doi.org/10.1016/j.jclepro.2019.118456 [Google Scholar]
  3. H. Wang, H. Liu, J. Yao, D. Ye, Z. Lang, A. Glowacz, J. Energy Storage, 2021, 35, 102275 LINK https://doi.org/10.1016/j.est.2021.102275 [Google Scholar]
  4. Y. Wang, Y. Yi, C. Fu, Y. Li, Manag. Decis. Econ., 2023, 44, (4), 2278 LINK https://doi.org/10.1002/mde.3817 [Google Scholar]
  5. “Sustainability Report and Implementation Plan 2019”, Environmental Protection Agency, Washington, DC, USA, 2019, 12 pp LINK https://www.epa.gov/sites/default/files/2020-01/documents/epa-2019-sustainability-plan_508.pdf [Google Scholar]
  6. Y. Li, Q. Zhang, Y. Tang, B. Mclellan, H. Ye, H. Shimoda, K. Ishihara, J. Clean. Prod., 2020, 249, 119384 LINK https://doi.org/10.1016/j.jclepro.2019.119384 [Google Scholar]
  7. C. Lu, Q. Wang, M. Zhao, J. Yan, Chin. J. Manag. Sci.., 2022, 30, (1), 64 LINK https://doi.org/10.16381/j.cnki.issn1003-207x.2019.1566 [Google Scholar]
  8. “World Energy Outlook 2020”, International Energy Agency, Paris, France, October, 2020, 464 pp LINK https://www.iea.org/reports/world-energy-outlook-2020 [Google Scholar]
  9. X. Wang, L. Huang, T. Daim, X. Li, Z. Li, Technol. Soc., 2021, 67, 101770 LINK https://doi.org/10.1016/j.techsoc.2021.101770 [Google Scholar]
  10. H. Davies, Johnson Matthey Technol. Rev., 2020, 64, (3), 252 LINK https://doi.org/10.1595/205651320x15816871073928 [Google Scholar]
  11. E. A. Nanaki, S. Kiartzis, G. A. Xydis, Policy Stud., 2022, 43, (2), 370 LINK https://doi.org/10.1080/01442872.2020.1718072 [Google Scholar]
  12. M. Craglia, J. Cullen, Transp. Res. Part D: Transp. Environ., 2020, 89, 102614 LINK https://doi.org/10.1016/j.trd.2020.102614 [Google Scholar]
  13. M. Isik, R. Dodder, P. O. Kaplan, Nat. Energy, 2021, 6, (1), 92 LINK https://doi.org/10.1038/s41560-020-00740-2 [Google Scholar]
  14. A. Lam, J.-F. Mercure, Energy Res. Soc. Sci, 2021, 75, 101951 LINK https://doi.org/10.1016/j.erss.2021.101951 [Google Scholar]
  15. X.-C. Tan, Y. Zeng, B.-H. Gu, J. Tang, D. Wang, J.-X. Guo, Adv. Clim. Chang. Res., 2020, 11, (4), 429 LINK https://doi.org/10.1016/j.accre.2020.11.011 [Google Scholar]
  16. M. Dijk, E. Iversen, A. Klitkou, R. Kemp, S. Bolwig, M. Borup, P. Møllgaard, Energies, 2020, 13, (2), 475 LINK https://doi.org/10.3390/en13020475 [Google Scholar]
  17. L.-S. Qiu, D.-X. Yang, K.-R. Hong, W.-P. Wu, W.-K. Zeng, Front. Energy Res., 2021, 9, 661585 LINK https://doi.org/10.3389/fenrg.2021.661585 [Google Scholar]
  18. H. Eshraghi, A. R. Queiroz de, J. F. DeCarolis, Environ. Sci. Technol., 2018, 52, (17), 9595 LINK https://doi.org/10.1021/acs.est.8b01586 [Google Scholar]
  19. D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, PRISMA Group, Ann. Intern. Med., 2009, 151, (4), 264 LINK https://doi.org/10.7326/0003-4819-151-4-200908180-00135 [Google Scholar]
  20. E. M. Murgado-Armenteros, M. Gutiérrez-Salcedo, F. J. Torres-Ruiz, M. J. Cobo, Scientometrics, 2015, 102, (1), 519 LINK https://doi.org/10.1007/s11192-014-1443-z [Google Scholar]
  21. A. Khan, M. K. Hassan, A. Paltrinieri, A. Dreassi, S. Bahoo, Int. Rev. Econ. Fin., 2020, 69, 389 LINK https://doi.org/10.1016/j.iref.2020.05.013 [Google Scholar]
  22. L. Zhang, Q. Qin, Transp. Res. Part A: Policy Pract., 2018, 110, 57 LINK https://doi.org/10.1016/j.tra.2018.02.012 [Google Scholar]
  23. J. Li, J. Jiao, Y. Xu, C. Chen, Sustain. Prod. Consum, 2021, 28, 637 LINK https://doi.org/10.1016/j.spc.2021.06.023 [Google Scholar]
  24. L. Peng, Y. Li, H. Yu, Sustainability, 2021, 13, (11), 5821 LINK https://doi.org/10.3390/su13115821 [Google Scholar]
  25. A. Jenn, I. L. Azevedo, P. Ferreira, Energy Econ, 2013, 40, 936 LINK https://doi.org/10.1016/j.eneco.2013.07.025 [Google Scholar]
  26. A. Jenn, I. L. Azevedo, J. J. Michalek, Transp. Res. Part A: Policy Pract., 2019, 124, 396 LINK https://doi.org/10.1016/j.tra.2019.04.003 [Google Scholar]
  27. X. Zhu, M. Ren, G. Wu, J. Pei, P. M. Pardalos, Comput. Ind. Eng., 2019, 135, 211 LINK https://doi.org/10.1016/j.cie.2019.06.004 [Google Scholar]
  28. C. ÓhAiseadha, G. Quinn, R. Connolly, M. Connolly, W. Soon, Energies, 2020, 13, (18), 4839 LINK https://doi.org/10.3390/en13184839 [Google Scholar]
  29. L. Perez, S. Trüeb, H. Cowie, M. P. Keuken, P. Mudu, M. S. Ragettli, D. A. Sarigiannis, M. Tobollik, J. Tuomisto, D. Vienneau, C. Sabel, N. Künzli, Environ. Int., 2015, 85, 111 LINK https://doi.org/10.1016/j.envint.2015.08.002 [Google Scholar]
  30. C. E. Sabel, R. Hiscock, A. Asikainen, J. Bi, M. Depledge, S. van den Elshout, R. Friedrich, G. Huang, F. Hurley, M. Jantunen, S. P. Karakitsios, M. Keuken, S. Kingham, P. Kontoroupis, N. Kuenzli, M. Liu, M. Martuzzi, K. Morton, P. Mudu, M. Niittynen, L. Perez, D. Sarigiannis, W. Stahl-Timmins, M. Tobollik, J. Tuomisto, S. Willers, Environ. Heal., 2016, 15, S25 LINK https://doi.org/10.1186/s12940-016-0097-0 [Google Scholar]
  31. C. Jiang, Y. Zhang, M. Bu, W. Liu, Sustainability, 2018, 10, (6), 1692 LINK https://doi.org/10.3390/su10061692 [Google Scholar]
  32. K. H. Tsoi, B. P. Y. Loo, D. Banister, Glob. Environ. Chang., 2021, 68, 102250 LINK https://doi.org/10.1016/j.gloenvcha.2021.102250 [Google Scholar]
  33. R. Audoly, A. Vogt-Schilb, C. Guivarch, A. Pfeiffer, Appl. Energy, 2018, 225, 884 LINK https://doi.org/10.1016/j.apenergy.2018.05.026 [Google Scholar]
  34. M. Wachtmeister, J. Environ. Dev., 2013, 22, (3), 284 LINK https://doi.org/10.1177/1070496513492520 [Google Scholar]
  35. L. Whitmarsh, J. Köhler, Cambridge J. Reg. Econ. Soc., 2010, 3, (3), 427 LINK https://doi.org/10.1093/cjres/rsq008 [Google Scholar]
  36. B. Zheng, Q. Zhang, J. Borken-Kleefeld, H. Huo, D. Guan, Z. Klimont, G. P. Peters, K. He, Appl. Energy, 2015, 156, 230 LINK https://doi.org/10.1016/j.apenergy.2015.07.018 [Google Scholar]
  37. M. E. J. Newman, Phys. Rev. E, 2001, 64, (1), 016132 LINK https://doi.org/10.1103/physreve.64.016132 [Google Scholar]
  38. M. E. J. Newman, Proc. Natl. Acad. Sci., 2004, 101, (1), 5200 LINK https://doi.org/10.1073/pnas.0307545100 [Google Scholar]
  39. B. Hjørland, J. Document., 1992, 48, (2), 172 LINK https://doi.org/10.1108/eb026895 [Google Scholar]
  40. J. Romm, Energy Policy, 2006, 34, (17), 2609 LINK https://doi.org/10.1016/j.enpol.2005.06.025 [Google Scholar]
  41. G. L. Kyriakopoulos, G. Arabatzis, Renew. Sustain. Energy Rev., 2016, 56, 1044 LINK https://doi.org/10.1016/j.rser.2015.12.046 [Google Scholar]
  42. E. S. Hanley, J. P. Deane, B. P. Ó. Gallachóir, Renew. Sustain. Energy Rev., 2018, 82, (3), 3027 LINK https://doi.org/10.1016/j.rser.2017.10.034 [Google Scholar]
  43. M. Contestabile, G. J. Offer, R. Slade, F. Jaeger, M. Thoennes, Energy Environ. Sci., 2011, 4, (10), 3754 LINK https://doi.org/10.1039/c1ee01804c [Google Scholar]
  44. A. Chandra, S. Gulati, M. Kandlikar, J. Environ. Econ. Manage., 2010, 60, (2), 78 LINK https://doi.org/10.1016/j.jeem.2010.04.003 [Google Scholar]
  45. W. R. Morrow, K. S. Gallagher, G. Collantes, H. Lee, Energy Policy, 2010, 38, (3), 1305 LINK https://doi.org/10.1016/j.enpol.2009.11.006 [Google Scholar]
  46. J. Du, D. Ouyang, Appl. Energy, 2017, 188, 529 LINK https://doi.org/10.1016/j.apenergy.2016.11.129 [Google Scholar]
  47. H. Gong, M. Q. Wang, H. Wang, Mitig. Adapt. Strateg. Glob. Chang., 2013, 18, (2), 207 LINK https://doi.org/10.1007/s11027-012-9358-6 [Google Scholar]
  48. Y. Zhou, M. Wang, H. Hao, L. Johnson, H. Wang, H. Hao, Mitig. Adapt. Strateg. Glob. Chang., 2015, 20, (5), 777 LINK https://doi.org/10.1007/s11027-014-9611-2 [Google Scholar]
  49. R. C. Pietzcker, T. Longden, W. Chen, S. Fu, E. Kriegler, P. Kyle, G. Luderer, Energy, 2014, 64, 95 LINK https://doi.org/10.1016/j.energy.2013.08.059 [Google Scholar]
  50. Y. K. Jeong, M. Song, Y. Ding, J. Informetr., 2014, 8, (1), 197 LINK https://doi.org/10.1016/j.joi.2013.12.001 [Google Scholar]
  51. G. Surwase, A. Sagar, B. S. Kademani, K. Bhanumurthy, ‘Co-Citation Analysis: An Overview’, Beyond Librarianship: Creativity, Innovation and Discovery, BOSLA National Conference, Mumbai, India, 16th–17th September, 2011, Bombay Science Librarians’ Association, Mumbai, India, 2011, pp. 180185 LINK https://core.ac.uk/download/pdf/290485458.pdf [Google Scholar]
  52. Y. Zhang, Z. Hou, F. Yang, M. M. Yang, Z. Wang, J. Bus. Res., 2021, 137, 500 LINK https://doi.org/10.1016/j.jbusres.2021.08.055 [Google Scholar]
  53. W. Tsai, C.-H. Wu, Acad. Manag. J., 2010, 53, (3), 441 LINK https://doi.org/10.5465/amj.2010.51459152 [Google Scholar]
  54. W. Sierzchula, S. Bakker, K. Maat, B. van Wee, Energy Policy, 2014, 68, 183 LINK https://doi.org/10.1016/j.enpol.2014.01.043 [Google Scholar]
  55. D. Diamond, Energy Policy, 2009, 37, (3), 972 LINK https://doi.org/10.1016/j.enpol.2008.09.094 [Google Scholar]
  56. K. S. Gallagher, E. Muehlegger, J. Environ. Econ. Manage., 2011, 61, (1), 1 LINK https://doi.org/10.1016/j.jeem.2010.05.004 [Google Scholar]
  57. H. Hao, X. Ou, J. Du, H. Wang, M. Ouyang, Energy Policy, 2014, 73, 722 LINK https://doi.org/10.1016/j.enpol.2014.05.022 [Google Scholar]
  58. X. Zhang, X. Bai, Renew. Sustain. Energy Rev., 2017, 70, 24 LINK https://doi.org/10.1016/j.rser.2016.11.211 [Google Scholar]
  59. X. Yuan, X. Liu, J. Zuo, Renew. Sustain. Energy Rev., 2015, 42, 298 LINK https://doi.org/10.1016/j.rser.2014.10.016 [Google Scholar]
  60. J. P. Helveston, Y. Liu, E. M. Feit, E. Fuchs, E. Klampfl, J. J. Michalek, Transp. Res. Part A: Policy Pract., 2015, 73, 96 LINK https://doi.org/10.1016/j.tra.2015.01.002 [Google Scholar]
  61. J. Jansson, Z. Rezvani, Energy Res. Soc. Sci., 2019, 48, 13 LINK https://doi.org/10.1016/j.erss.2018.09.009 [Google Scholar]
  62. X. Zhang, K. Wang, Y. Hao, J.-L. Fan, Y.-M. Wei, Energy Policy, 2013, 61, 382 LINK https://doi.org/10.1016/j.enpol.2013.06.114 [Google Scholar]
  63. K. W. McCain, Scientometrics, 1998, 41, (3), 389 LINK https://doi.org/10.1007/bf02459053 [Google Scholar]
  64. A. Anwar, A. Sharif, S. Fatima, P. Ahmad, A. Sinha, S. A. R. Khan, K. Jermsittiparsert, J. Clean. Prod., 2021, 288, 125282 LINK https://doi.org/10.1016/j.jclepro.2020.125282 [Google Scholar]
  65. L. Zhang, L. Wang, J. Chai, J. Clean. Prod., 2020, 275, 124069 LINK https://doi.org/10.1016/j.jclepro.2020.124069 [Google Scholar]
  66. R. Kok, Transp. Res. Part A: Policy Pract., 2015, 77, 137 LINK https://doi.org/10.1016/j.tra.2015.04.009 [Google Scholar]
  67. F. Dong, L. Zheng, Environ. Sci. Pollut. Res., 2022, 29, (4), 5863 LINK https://doi.org/10.1007/s11356-021-16036-1 [Google Scholar]
  68. X. Liu, X. Sun, H. Zheng, D. Huang, Transp. Res. Part A: Policy Pract., 2021, 150, 49 LINK https://doi.org/10.1016/j.tra.2021.05.013 [Google Scholar]
  69. S. Gong, A. Ardeshiri, T. Hossein Rashidi, Transp. Res. Part D: Transp. Environ., 2020, 83, 102353 LINK https://doi.org/10.1016/j.trd.2020.102353 [Google Scholar]
  70. I. Wolf, T. Schröder, J. Neumann, G. de Haan, Technol. Forecast. Soc. Change, 2015, 94, 269 LINK https://doi.org/10.1016/j.techfore.2014.10.010 [Google Scholar]
  71. E. Lopez-Arboleda, A. T. Sarmiento, L. M. Cardenas, Sys. Pract. Act. Res., 2020, 34, (4), 399 LINK https://doi.org/10.1007/s11213-020-09540-x [Google Scholar]
  72. E. Higueras-Castillo, A. Guillén, L.-J. Herrera, F. Liébana-Cabanillas, Int. J. Sustain. Transp., 2021, 15, (10), 799 LINK https://doi.org/10.1080/15568318.2020.1818330 [Google Scholar]
  73. C. Zimm, Transp. Pol., 2021, 105, 54 LINK https://doi.org/10.1016/j.tranpol.2020.12.012 [Google Scholar]
  74. L. Mohammed, E. Niesten, D. Gagliardi, Transp. Res. Part D: Transp. Environ., 2020, 88, 102558 LINK https://doi.org/10.1016/j.trd.2020.102558 [Google Scholar]
  75. T. Luo, Y. Tan, C. Langston, X. Xue, Energy Build., 2019, 194, 163 LINK https://doi.org/10.1016/j.enbuild.2019.03.050 [Google Scholar]
  76. W. Zhang, T. Yoshida, X. Tang, Expert Syst. Appl., 2011, 38, (3), 2758 LINK https://doi.org/10.1016/j.eswa.2010.08.066 [Google Scholar]
  77. X. Li, P. Wu, G. Q. Shen, X. Wang, Y. Teng, Autom. Constr., 2017, 84, 195 LINK https://doi.org/10.1016/j.autcon.2017.09.011 [Google Scholar]
  78. S. Meng, D. Xiong, Trop. Conserv. Sci., 2018, 11 LINK https://doi.org/10.1177/1940082918806795 [Google Scholar]
  79. G. Lou, H. Ma, T. Fan, H. K. Chan, Resour. Conserv. Recycl., 2020, 156, 104712 LINK https://doi.org/10.1016/j.resconrec.2020.104712 [Google Scholar]
  80. W. Liu, H. Yi, Int. J. Environ. Res. Public Health, 2020, 17, (3), 726 LINK https://doi.org/10.3390/ijerph17030726 [Google Scholar]
  81. N. Zhou, Q. Wu, X. Hu, Sustainability, 2020, 12, (9), 3629 LINK https://doi.org/10.3390/su12093629 [Google Scholar]
  82. J.-W. Hu, A. Javaid, F. Creutzig, Energy Policy, 2021, 155, 112349 LINK https://doi.org/10.1016/j.enpol.2021.112349 [Google Scholar]
  83. J. Li, Y. Zhou, D. Yu, C. Liu, Sustainability, 2020, 12, (5), 1711 LINK https://doi.org/10.3390/su12051711 [Google Scholar]
  84. K. Kim, J. Lee, J. Kim, Energy Policy, 2021, 154, 112311 LINK https://doi.org/10.1016/j.enpol.2021.112311 [Google Scholar]
  85. Y. Li, F. Taghizadeh-Hesary, Energy Policy, 2022, 160, 112703 LINK https://doi.org/10.1016/j.enpol.2021.112703 [Google Scholar]
  86. D. D. T. Ferraren-De Cagalitan, M. L. S. Abundo, Renew. Sustain. Energy Rev., 2021, 151, 111413 LINK https://doi.org/10.1016/j.rser.2021.111413 [Google Scholar]
  87. Y. Yin, F. Liu, Complexity, 2021, 3720373 LINK https://doi.org/10.1155/2021/3720373 [Google Scholar]
/content/journals/10.1595/205651324X16873481731553
Loading
/content/journals/10.1595/205651324X16873481731553
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test