Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


The elastic, mechanical, thermophysical and ultrasonic properties of platinum group metal (pgm) carbides XC (X = rhodium, palladium, iridium) have been investigated at room temperature. The Coulomb and Born-Mayer potential model was used to compute second- and third-order elastic constants (SOECs and TOECs) at 0 K and 300 K. The obtained values of SOECs were used to evaluate mechanical properties such as Young’s modulus, bulk modulus, shear modulus, Pugh’s indicator, Zener anisotropic constant and Poisson’s ratio at room temperature. The materials show brittle nature as the value of Pugh’s indicator for pgm carbides is ≤1.75. The values of SOECs were used to compute the ultrasonic velocities along <100>, <110> and <111> directions for the longitudinal and shear modes of wave propagation. Further, the values of Debye temperature, thermal conductivity, specific heat per unit volume, energy density, average value of ultrasonic Grüneisen parameter, thermal relaxation time and non-linear parameter were calculated with the help of SOECs, TOECs, ultrasonic velocities, density and molecular weight. Finally, the ultrasonic attenuation due to phonon-phonon interaction and due to thermoelastic relaxation mechanisms were calculated with the use of all associated parameters. The calculated values of elastic, mechanical, thermophysical and ultrasonic properties are compared with available literature and discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Li Q., Zhang X., Liu H., Wang H., Zhang M., Li Q., and Ma Y. Inorg. Chem., 2014, 53, (11), 5797 LINK [Google Scholar]
  2. Ono S., Kikegawa T., and Ohishi Y. Solid State Commun., 2005, 133, (1), 55 LINK [Google Scholar]
  3. Jyoti B., Triapthi S., Singh S. P., Singh D. K., and Singh D. Mater. Today Commun., 2021, 27, 102189 LINK [Google Scholar]
  4. Li X., Du X. P., and Wang Y. X. J. Phys. Chem. C, 2011, 115, (14), 6948 LINK [Google Scholar]
  5. Rabah M., Benalia S., Rached D., Abidri B., Rached H., and Vergoten G. Comput. Mater. Sci., 2010, 48, (3), 556 LINK [Google Scholar]
  6. Guillermet A. F., Häglund J., and Grimvall G. Phys. Rev. B, 1992, 45, (20), 11557 LINK [Google Scholar]
  7. Bugaev A. L., Usoltsev O. A., Guda A. A., Lomachenko K. A., Pankin I. A., Rusalev Y. V., Emerich H., Groppo E., Pellegrini R., Soldatov A. V., van Bokhoven J. A., and Lamberti C. J. Phys. Chem. C, 2018, 122, (22), 12029 LINK [Google Scholar]
  8. Soni H. R., Gupta S. K., and Jha P. K. Phys. B: Condens. Matter, 2011, 406, (19), 3556 LINK [Google Scholar]
  9. Ateser E., Ozisik H. B., Deligoz E., and Colakoglu K. Int. J. Mod. Phys. B, 2013, 27, (06), 1350016 LINK [Google Scholar]
  10. Ivanovskii A. L. Russ. Chem. Rev., 2009, 78, (4), 303 LINK [Google Scholar]
  11. Bannikov V. V., Shein I. R., and Ivanovskii A. L. J. Phys. Chem. Solids, 2010, 71, (5), 803 LINK [Google Scholar]
  12. Li L. Mod. Phys. Lett. B, 2008, 22, (30), 2937 LINK [Google Scholar]
  13. Tan H., Liao M., and Balasubramanian K. Chem. Phys. Lett., 1997, 280, (5–6), 423 LINK [Google Scholar]
  14. Wakisaka T., Kusada K., Wu D., Yamamoto T., Toriyama T., Matsumura S., Akiba H., Yamamuro O., Ikeda K., Otomo T., Palina N., Chen Y., Kumara L.S.R., Song C., Sakata O., Xie W., Koyama M., Kubota Y., Kawaguchi S., Arevalo R. L., Aspera S. M., Arguelles E. F., Nakanishi H., and Kitagawa H. J. Am. Chem. Soc., 2019, 142, (3), 1247 LINK [Google Scholar]
  15. Ksouri R., Maizi R., Boudjahem A.-G., Djaghout I., Derdare M., and Merdes R. Phys. Met. Metallogr., 2022, 123, (13), 1376 LINK [Google Scholar]
  16. Zhang Y., Du S., Zhao Z., Han H., Li G., Zou J., Xie H., and Jiang L. J. Energy Chem., 2023, 77, 529 LINK [Google Scholar]
  17. Bala J., and Singh D. Eng. Appl. Sci. Res., 2020, 47, (2), 182 LINK [Google Scholar]
  18. Bala J., Singh S. P., Verma A. K., Singh D. K., and Singh D. Indian J. Phys., 2022, 96, (11), 3191 LINK [Google Scholar]
  19. Mason W. P., ‘Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon’, in “Physical Acoustics”, ed. and Mason W. P. 3, Part B,Academic Press Inc, New York, USA, 1965, pp. 235286 [Google Scholar]
  20. Morelli D. T., Slack G. A., ‘High Lattice Thermal Conductivity Solids’, in “High Thermal Conductivity Materials”, eds. Shindé S. L., and Goela J. S. Springer Science and Business Media Inc, New York, USA, 2006, pp. 3768 LINK [Google Scholar]
  21. “American Institute of Physics Handbook”, ed. Gray D. E. 3rd Edn., McGraw-Hill Inc, New York, USA, 1972 [Google Scholar]
  22. Tosi M. P., ‘Cohesion of Ionic Solids in the Born Model’, in “Solid State Physics: Advances in Research and Applications”, eds. Seitz F., and Turnbull D. 16, Academic Press Inc, New York, USA, 1964, pp. 1120 LINK [Google Scholar]
  23. Medvedeva N. I., and Ivanovskii A. L. Phys. Status Solidi, 2014, 251, (1), 148 LINK [Google Scholar]
  24. MacFarlane R. E., Rayne J. A., and Jones C. K. Phys. Lett., 1966, 20, (3), 234 LINK [Google Scholar]
  25. Pandya C. V., Vyas P. R., Pandya T. C., Rani N., and Gohel V. B. Phys. B: Condens. Matter, 2001, 307, (1–4), 138 LINK [Google Scholar]
  26. Sun Y. J., Xiong K., Zhang S. M., and Mao Y. Mater. Sci. Forum, 2019, 944, 761 LINK [Google Scholar]
  27. Cousins C.S.G. J. Phys. C: Solid State Phys., 1971, 4, (10), 1117 LINK [Google Scholar]
  28. Born M., Huang K., and Lax M. Am. J. Phys., 1955, 23, (7), 474 LINK [Google Scholar]
  29. Pugh S. F. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1954, 45, (367), 823 LINK [Google Scholar]
  30. Pettifor D. G. Mater. Sci. Technol., 1992, 8, (4), 345 LINK [Google Scholar]
  31. Watt J. P., and Peselnick L. J. Appl. Phys., 1980, 51, (3), 1525 LINK [Google Scholar]
  32. Luo X., and Wang B. J. Appl. Phys., 2008, 104, (7), 073518 LINK [Google Scholar]
  33. Darling A. S. Platinum Metals Rev. 1966, 10, (1), 14 LINK [Google Scholar]
  34. Li C., and Wang Z. ‘Computational Modelling and ab initio Calculations in MAX Phases – I’, in “Advances in Science and Technology of Mn+1AXn Phases”, Woodhead Publishing Ltd, Sawston, UK, 2012, pp. 197222 LINK [Google Scholar]
  35. Hsu D. K., and Leisure R. G. Phys. Rev. B, 1979, 20, (4), 1339 LINK [Google Scholar]
  36. Singh D., Pandey D. K., and Yadawa P. K. Cent. Eur. J. Phys., 2009, 7, (1), 198 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error