Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

The elastic, mechanical, thermophysical and ultrasonic properties of platinum group metal (pgm) carbides XC (X = rhodium, palladium, iridium) have been investigated at room temperature. The Coulomb and Born-Mayer potential model was used to compute second- and third-order elastic constants (SOECs and TOECs) at 0 K and 300 K. The obtained values of SOECs were used to evaluate mechanical properties such as Young’s modulus, bulk modulus, shear modulus, Pugh’s indicator, Zener anisotropic constant and Poisson’s ratio at room temperature. The materials show brittle nature as the value of Pugh’s indicator for pgm carbides is ≤1.75. The values of SOECs were used to compute the ultrasonic velocities along <100>, <110> and <111> directions for the longitudinal and shear modes of wave propagation. Further, the values of Debye temperature, thermal conductivity, specific heat per unit volume, energy density, average value of ultrasonic Grüneisen parameter, thermal relaxation time and non-linear parameter were calculated with the help of SOECs, TOECs, ultrasonic velocities, density and molecular weight. Finally, the ultrasonic attenuation due to phonon-phonon interaction and due to thermoelastic relaxation mechanisms were calculated with the use of all associated parameters. The calculated values of elastic, mechanical, thermophysical and ultrasonic properties are compared with available literature and discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16902884637568
2023-07-25
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Singh2_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16902884637568&mimeType=html&fmt=ahah

References

  1. Q. Li, X. Zhang, H. Liu, H. Wang, M. Zhang, Q. Li, Y. Ma, Inorg. Chem., 2014, 53, (11), 5797 LINK https://doi.org/10.1021/ic5006133 [Google Scholar]
  2. S. Ono, T. Kikegawa, Y. Ohishi, Solid State Commun., 2005, 133, (1), 55 LINK https://doi.org/10.1016/j.ssc.2004.09.048 [Google Scholar]
  3. B. Jyoti, S. Triapthi, S. P. Singh, D. K. Singh, D. Singh, Mater. Today Commun., 2021, 27, 102189 LINK https://doi.org/10.1016/j.mtcomm.2021.102189 [Google Scholar]
  4. X. Li, X. P. Du, Y. X. Wang, J. Phys. Chem. C, 2011, 115, (14), 6948 LINK https://doi.org/10.1021/jp112308t [Google Scholar]
  5. M. Rabah, S. Benalia, D. Rached, B. Abidri, H. Rached, G. Vergoten, Comput. Mater. Sci., 2010, 48, (3), 556 LINK https://doi.org/10.1016/j.commatsci.2010.02.023 [Google Scholar]
  6. A. F. Guillermet, J. Häglund, G. Grimvall, Phys. Rev. B, 1992, 45, (20), 11557 LINK https://doi.org/10.1103/physrevb.45.11557 [Google Scholar]
  7. A. L. Bugaev, O. A. Usoltsev, A. A. Guda, K. A. Lomachenko, I. A. Pankin, Y. V. Rusalev, H. Emerich, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven, C. Lamberti, J. Phys. Chem. C, 2018, 122, (22), 12029 LINK https://doi.org/10.1021/acs.jpcc.7b11473 [Google Scholar]
  8. H. R. Soni, S. K. Gupta, P. K. Jha, Phys. B: Condens. Matter, 2011, 406, (19), 3556 LINK https://doi.org/10.1016/j.physb.2011.06.023 [Google Scholar]
  9. E. Ateser, H. B. Ozisik, E. Deligoz, K. Colakoglu, Int. J. Mod. Phys. B, 2013, 27, (06), 1350016 LINK https://doi.org/10.1142/s0217979213500161 [Google Scholar]
  10. A. L. Ivanovskii, Russ. Chem. Rev., 2009, 78, (4), 303 LINK https://doi.org/10.1070/rc2009v078n04abeh004036 [Google Scholar]
  11. V. V. Bannikov, I. R. Shein, A. L. Ivanovskii, J. Phys. Chem. Solids, 2010, 71, (5), 803 LINK https://doi.org/10.1016/j.jpcs.2010.02.005 [Google Scholar]
  12. L. Li, Mod. Phys. Lett. B, 2008, 22, (30), 2937 LINK https://doi.org/10.1142/s0217984908017424 [Google Scholar]
  13. H. Tan, M. Liao, K. Balasubramanian, Chem. Phys. Lett., 1997, 280, (5–6), 423 LINK https://doi.org/10.1016/s0009-2614(97)01196-2 [Google Scholar]
  14. T. Wakisaka, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, H. Akiba, O. Yamamuro, K. Ikeda, T. Otomo, N. Palina, Y. Chen, L.S.R. Kumara, C. Song, O. Sakata, W. Xie, M. Koyama, Y. Kubota, S. Kawaguchi, R. L. Arevalo, S. M. Aspera, E. F. Arguelles, H. Nakanishi, H. Kitagawa, J. Am. Chem. Soc., 2019, 142, (3), 1247 LINK https://doi.org/10.1021/jacs.9b09219 [Google Scholar]
  15. R. Ksouri, R. Maizi, A.-G. Boudjahem, I. Djaghout, M. Derdare, R. Merdes, Phys. Met. Metallogr., 2022, 123, (13), 1376 LINK https://doi.org/10.1134/s0031918x21101129 [Google Scholar]
  16. Y. Zhang, S. Du, Z. Zhao, H. Han, G. Li, J. Zou, H. Xie, L. Jiang, J. Energy Chem., 2023, 77, 529 LINK https://doi.org/10.1016/j.jechem.2022.11.033 [Google Scholar]
  17. J. Bala, D. Singh, Eng. Appl. Sci. Res., 2020, 47, (2), 182 LINK https://doi.org/10.14456/easr.2020.20 [Google Scholar]
  18. J. Bala, S. P. Singh, A. K. Verma, D. K. Singh, D. Singh, Indian J. Phys., 2022, 96, (11), 3191 LINK http://doi.org/10.1007/s12648-021-02278-9 [Google Scholar]
  19. W. P. Mason, ‘Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon’, in “Physical Acoustics”, ed. W. P. Mason, 3, Part B,Academic Press Inc, New York, USA, 1965, pp. 235286 [Google Scholar]
  20. D. T. Morelli, G. A. Slack, ‘High Lattice Thermal Conductivity Solids’, in “High Thermal Conductivity Materials”, eds. S. L. Shindé, J. S. Goela, Springer Science and Business Media Inc, New York, USA, 2006, pp. 3768 LINK https://doi.org/10.1007/0-387-25100-6_2 [Google Scholar]
  21. “American Institute of Physics Handbook”, ed. D. E. Gray, 3rd Edn., McGraw-Hill Inc, New York, USA, 1972 [Google Scholar]
  22. M. P. Tosi, ‘Cohesion of Ionic Solids in the Born Model’, in “Solid State Physics: Advances in Research and Applications”, eds. F. Seitz, D. Turnbull, 16, Academic Press Inc, New York, USA, 1964, pp. 1120 LINK https://doi.org/10.1016/s0081-1947(08)60515-9 [Google Scholar]
  23. N. I. Medvedeva, A. L. Ivanovskii, Phys. Status Solidi, 2014, 251, (1), 148 LINK https://doi.org/10.1002/pssb.201349062 [Google Scholar]
  24. R. E. MacFarlane, J. A. Rayne, C. K. Jones, Phys. Lett., 1966, 20, (3), 234 LINK https://doi.org/10.1016/0031-9163(66)90340-4 [Google Scholar]
  25. C. V. Pandya, P. R. Vyas, T. C. Pandya, N. Rani, V. B. Gohel, Phys. B: Condens. Matter, 2001, 307, (1–4), 138 LINK https://doi.org/10.1016/s0921-4526(01)00634-2 [Google Scholar]
  26. Y. J. Sun, K. Xiong, S. M. Zhang, Y. Mao, Mater. Sci. Forum, 2019, 944, 761 LINK https://doi.org/10.4028/www.scientific.net/msf.944.761 [Google Scholar]
  27. C.S.G. Cousins, J. Phys. C: Solid State Phys., 1971, 4, (10), 1117 LINK https://doi.org/10.1088/0022-3719/4/10/020 [Google Scholar]
  28. M. Born, K. Huang, M. Lax, Am. J. Phys., 1955, 23, (7), 474 LINK https://doi.org/10.1119/1.1934059 [Google Scholar]
  29. S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1954, 45, (367), 823 LINK https://doi.org/10.1080/14786440808520496 [Google Scholar]
  30. D. G. Pettifor, Mater. Sci. Technol., 1992, 8, (4), 345 LINK https://doi.org/10.1179/mst.1992.8.4.345 [Google Scholar]
  31. J. P. Watt, L. Peselnick, J. Appl. Phys., 1980, 51, (3), 1525 LINK https://doi.org/10.1063/1.327804 [Google Scholar]
  32. X. Luo, B. Wang, J. Appl. Phys., 2008, 104, (7), 073518 LINK https://doi.org/10.1063/1.2990068 [Google Scholar]
  33. A. S. Darling, Platinum Metals Rev. 1966, 10, (1), 14 LINK https://technology.matthey.com/article/10/1/14-19/ [Google Scholar]
  34. C. Li, Z. Wang, ‘Computational Modelling and ab initio Calculations in MAX Phases – I’, in “Advances in Science and Technology of Mn+1AXn Phases”, Woodhead Publishing Ltd, Sawston, UK, 2012, pp. 197222 LINK https://doi.org/10.1533/9780857096012.197 [Google Scholar]
  35. D. K. Hsu, R. G. Leisure, Phys. Rev. B, 1979, 20, (4), 1339 LINK https://doi.org/10.1103/physrevb.20.1339 [Google Scholar]
  36. D. Singh, D. K. Pandey, P. K. Yadawa, Cent. Eur. J. Phys., 2009, 7, (1), 198 LINK https://doi.org/10.2478/s11534-008-0130-1 [Google Scholar]
/content/journals/10.1595/205651323X16902884637568
Loading
/content/journals/10.1595/205651323X16902884637568
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test