Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

Temperature is the most frequently measured process variable in almost all industrial sectors from the chemical industry to glass and ceramics, refrigeration and power generation. During many manufacturing processes, continuous temperature control is an important part of product quality assurance and a matter of avoiding malfunctions or detecting them at an early stage. Measuring points can be located at different places such as in containers, pipe systems, machines, ovens or reactors, whereby different gaseous, liquid or solid media, for instance, steam, water, oil or special chemical substances may be involved. In view of these extremely complex tasks, flexibility is one of the most important requirements for measurement technology and signal processing. And this is where thermocouples, which can be adapted to almost all measuring tasks due to their simple design, become relevant. The basic design and operating principle of thermocouples are described in this paper; issues relating to calibration, traceability and measurement uncertainty are addressed. Recent developments to improve temperature measurement with thermocouples are presented. New, drift-optimised thermocouples, novel designs and alternative calibration methods are described, and their advantages over conventional thermocouples or calibration methods are specified.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16692809325480
2023-01-12
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Edler_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16692809325480&mimeType=html&fmt=ahah

References

  1. H. Preston-Thomas, Metrologia, 1990, 27, (2), 107 LINK https://doi.org/10.1088/0026-1394/27/2/010 [Google Scholar]
  2. ‘Thermocouples – Part 1: EMF Specifications and Tolerances’, IEC 60584-1:2013, International Electrotechnical Commission, Geneva, Switzerland, 2013, 136 pp LINK https://webstore.iec.ch/publication/2521 [Google Scholar]
  3. ‘Temperature – Electromotive Force (EMF) Tables for Pure-Element Thermocouple Combinations’, IEC 62460:2008, International Electrotechnical Commission, Geneva, Switzerland, 2008, 57 pp LINK https://webstore.iec.ch/publication/7064 [Google Scholar]
  4. ‘Standard Specification for Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples’, ASTM E230/E230M-17, ASTM International, West Conshohocken, Pennsylvania, USA, 2017 LINK https://webstore.ansi.org/standards/astm/astme230e230m17 [Google Scholar]
  5. T. J. Quinn, ‘Thermocouples’, in “Temperature”, 2nd Edn., Ch. 6, Academic Press, Cambridge, Massachusetts, USA, 1990, pp. 286331 LINK https://doi.org/10.1016/C2013-0-11338-4 [Google Scholar]
  6. R. E. Bentley, “Handbook of Temperature Measurement: The Theory and Practice of Thermoelectric Thermometry”, Vol. 3, Springer-Verlag Singapore Pte Ltd, Singapore, 1998, 245 pp [Google Scholar]
  7. J. V. Nicholas, R. D. White, ‘Thermocouple Thermometry’, in “Traceable Temperatures: An Introduction to Temperature Measurement and Calibration”, 2nd Edn., Ch. 8, John Wiley & Sons Ltd, Chichester, UK, 2001, pp. 295342 LINK https://doi.org/10.1002/0470846151.ch8 [Google Scholar]
  8. F. Edler, Y. G. Kim, H. Liedberg, E. Webster, D. R. White, ‘Guide to Secondary Thermometry: Thermocouple Thermometry: 1. General Usage’, Consultative Committee for Thermometry, Bureau International des Poids et Mesures (BIPM), Sèvres, France, 2021, 62 pp LINK https://www.bipm.org/documents/20126/53026765/Thermocouple_Thermometry_Part1.pdf/d23088f8-3bab-bacc-0cae-7358eb2666b4?version=1.4&t=1632749057506&download=true [Google Scholar]
  9. Joint Committee for Guides in Metrology,, ‘International Vocabulary of Metrology –Basic and General Concepts and Associated Terms (VIM)’, JCGM 200:2012(E/F), 3rd Edn., Bureau International des Poids et Mesures (BIPM), Sèvres, France, 2012, 108 pp LINK https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf [Google Scholar]
  10. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, Metrologia, 1999, 36, (3), 207 LINK https://doi.org/10.1088/0026-1394/36/3/6 [Google Scholar]
  11. F. Edler, Y. G. Kim, G. Machin, J. Pearce, D. R. White, ‘Guide to Secondary Thermometry: Specialized Fixed Point above 0°C’, Consultative Committee for Thermometry, Bureau International des Poids et Mesures (BIPM), Sèvres, France, 2022, 37 pp LINK https://www.bipm.org/documents/20126/41773843/Specialized-FPs-above-0C.pdf/10265617-c79f-0ea5-8da9-8d359e21c6be?version=1.5&t=1642160663583&download=true [Google Scholar]
  12. M. Tischler, M. J. Koremblit, ‘Miniature Thermometric Fixed Points for Thermocouple Calibrations’, in “Temperature: Its Measurement and Control in Science and Industry”, ed. J. F. Schooley, 5, American Institute of Physics, New York, USA, 1982, p. 383 [Google Scholar]
  13. F. Edler, K. Huang, Int. J. Thermophys., 2016, 37, (12), 126 LINK https://doi.org/10.1007/s10765-016-2134-1 [Google Scholar]
  14. F. Edler, K. Huang, Int. J. Thermophys., 2016, 37, (12), 119 LINK https://doi.org/10.1007/s10765-016-2125-2 [Google Scholar]
  15. F. Jahan, M. Ballico, ‘A Study of the Temperature Dependence of Inhomogeneity in Platinum-Based Thermocouples’, in “Temperature: Its Measurement and Control in Science and Industry”, ed. D. C. Ripple, 7, American Institute of Physics, New York, USA, 2003, 469 [Google Scholar]
  16. E. Webster, Metrologia, 2021, 58, (2), 025004 LINK https://doi.org/10.1088/1681-7575/abdd9a [Google Scholar]
  17. E. H. McLaren, E. G. Murdock, “The Pt/Au Thermocouple: I. Essential Performance; II. Preparatory Heat Treatment, Wire Comparisons and Provisional Scale”, Publication No. NRCC-27703, National Research Council of Canada, Ottawa, Canada, 22nd April, 2009, 111 pp [Google Scholar]
  18. G. W. Burns, G. F. Strouse, B. M. Liu, B. W. Mangum, ‘Gold versus Platinum Thermocouples: Performance Data and an ITS-90 Based Reference Function’, in “Temperature: Its Measurement and Control in Science and Industry”, ed. J. F. Schooley, 6, American Institute of Physics, New York, USA, 1992, p. 531 [Google Scholar]
  19. D. C. Ripple, G. W. Burns, “Standard Reference Material 1749: Au/Pt Thermocouple Thermometer”, Special Publication (NIST SP) – 260-134, National Institute of Standards and Technology, Gaithersburg, USA, 1st March, 2002 [Google Scholar]
  20. G. W. Burns, D. C. Ripple, M. Battuello, Metrologia, 1998, 35, (5), 761 LINK https://doi.org/10.1088/0026-1394/35/5/6 [Google Scholar]
  21. W. S. Ohm, K. D. Hill, Int. J. Thermophys., 2010, 31, (8–9), 1402 LINK https://doi.org/10.1007/s10765-010-0748-2 [Google Scholar]
  22. J. V. Pearce, F. Edler, C. J. Elliott, L. Rosso, G. Sutton, R. Zante, G. Machin, ‘A European Project to Enhance Process Efficiency Through Improved Temperature Measurement: EMPRESS’, 17th International Congress of Metrology, Paris, France, 21st–24th September, 2015, EDP Sciences, Les Ulis, France, 2015, 6 pp LINK https://doi.org/10.1051/metrology/20150008001 [Google Scholar]
  23. J. V. Pearce, A. Heyes, A. Fateev, G. Sutton, A. Andreu, G. Machin, “Enhancing Process Efficiency Through Improved Temperature Measurement: The EMPRESS Projects”, National Physical Laboratory, Teddington, UK, 2019, 22 pp LINK https://www.strath.ac.uk/media/1newwebsite/centres/advancedformingresearchcentre/EMPRESS2_overview_june2019.pdf [Google Scholar]
  24. F. Edler, P. Ederer, AIP Conf. Proc., 2013, 1552, (1), 532 LINK https://doi.org/10.1063/1.4819597 [Google Scholar]
  25. J. V. Pearce, Johnson Matthey Technol. Rev., 2016, 60, (4) 238 LINK https://technology.matthey.com/article/60/4/238-242/ [Google Scholar]
  26. J. C. Chaston, Platinum Metals Rev., 1975, 19, (4), 135 LINK https://technology.matthey.com/article/19/4/135-140/ [Google Scholar]
  27. C. B. Alcock, G. W. Hooper, Proc. R. Soc. Lond. A, 1960, 254, (1279), 551 LINK https://doi.org/10.1098/rspa.1960.0040 [Google Scholar]
  28. E. S. Webster, A. Greenen, J. Pearce, Int. J. Thermophys., 2016, 37, (7), 70 LINK https://doi.org/10.1007/s10765-016-2074-9 [Google Scholar]
  29. J. V. Pearce, F. Edler, C. J. Elliott, A. Greenen, P. M. Harris, C. Garcia Izquierdo, Y.-G. Kim, M. J. Martin, I. M. Smith, D. Tucker, R. I. Veltcheva, Metrologia, 2018, 55, (4), 558 LINK https://doi.org/10.1088/1681-7575/aacbf7 [Google Scholar]
  30. F. Edler, J. Bojkovski, C. G. Izquerdo, M. J. Martin, D. Tucker, N. Arifovic, S. L. Andersen, L. Sindelarova, V. Zuzek, Int. J. Thermophys., 2021, 42, (11), 150 LINK https://doi.org/10.1007/s10765-021-02895-w [Google Scholar]
  31. E. S. Webster, Int. J. Thermophys., 2015, 36, (8), 1909 LINK https://doi.org/10.1007/s10765-015-1910-7 [Google Scholar]
  32. E. S. Webster, F. Edler, Int. J. Thermophys., 2017, 38, (2), 29 LINK https://doi.org/10.1007/s10765-016-2166-6 [Google Scholar]
  33. E. S. Webster, D. R. White, H. Edgar, Int. J. Thermophys., 2015, 36, (2–3), 444 LINK https://doi.org/10.1007/s10765-014-1810-2 [Google Scholar]
  34. E. Webster, Metrologia, 2020, 57, (1), 014005 LINK https://doi.org/10.1088/1681-7575/ab5622 [Google Scholar]
  35. T. D. Ford, M. Scervini, “Low Drift Type K and N Mineral Insulated Thermocouple Cable for Aerospace Applications”, TE Wire & Cable LLC, New Jersey, USA, White Paper, 2020, 11 pp [Google Scholar]
  36. D. J. L. Tucker, F. Edler, V. Žužek, J. Bojkovski, C. Garcia-Izquierdo, M. Parrondo, L. Šindelářová, N. Arifovic, Meas. Sci. Technol., 2022, 33, (7), 075003 LINK https://doi.org/10.1088/1361-6501/ac57ee [Google Scholar]
  37. S. Mella, A. Löffler, M. Schalles, ‘C4.2 Reliable Multipoint Temperature Profiling in Hydroprocessing Units’, SMSI 2021 Conference, Online, 3rd–6th May, 2021, Sensor and Measurement Science International, Wunstorf, Germany, 2021, pp. 199200 LINK https://doi.org/10.5162/SMSI2021/C4.2 [Google Scholar]
  38. Y. Yamada, F. Sakuma, A. Ono, Metrologia, 2000, 37, (1), 71 LINK https://doi.org/10.1088/0026-1394/37/1/10 [Google Scholar]
  39. J. V. Pearce, D. L. Tucker, R. I. Veltcheva, G. Machin, Johnson Matthey Technol. Rev., 2023, 67, (1), 4 LINK https://technology.matthey.com/article/67/1/4-13/ [Google Scholar]
/content/journals/10.1595/205651323X16692809325480
Loading
/content/journals/10.1595/205651323X16692809325480
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test