Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Fungi commonly found in municipal water can participate in natural biofilm formation on the surface of galvanised steel despite the toxic effect of zinc. Depending on the age of the biofilm, fungal diversity may vary. To examine this hypothesis, natural biofilm formation was allowed on galvanised steel surfaces over six months in a model recirculating water system. Fungal colonies with different morphologies were obtained monthly from biofilm and water samples and then identified by both morphological and molecular approaches. In addition, the biofilm layer was examined by electrochemical impedance spectroscopy (EIS) analysis and scanning electron microscopy (SEM). It was determined that fungi were included in the naturally aging biofilm formed on galvanised steel surfaces during the experiment. The diversity and the number of fungi in the biofilm and water changed over the experiment. All fungi isolated from the biofilm and water were found to be members of the Ascomycota phylum. was the first fungus to be involved in the biofilm formation process and was one of the main inhabitants of the biofilm together with spp. In addition, EIS data showed that the structure of the biofilm changed as it aged. The results of this study may lead to a better understanding of naturally aging biofilms involving fungi in municipal water systems, as well as the development of new strategies for effective disinfection of fungi based on biofilm age.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16748145957998
2023-01-27
2024-07-10
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Kadaifciler_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16748145957998&mimeType=html&fmt=ahah

References

  1. Ilhan-Sungur E., and Çotuk A. Corros. Sci., 2010, 52, (1), 161 LINK https://doi.org/10.1016/j.corsci.2009.08.049 [Google Scholar]
  2. Kadaifciler D. G., and Demirel R. J. Water Health, 2017, 15, (2), 308 LINK https://doi.org/10.2166/wh.2017.274 [Google Scholar]
  3. Jia R., Li Y., Al-Mahamedh H. H., and Gu T. Front. Microbiol., 2017, 8, 1538 LINK https://doi.org/10.3389/fmicb.2017.01538 [Google Scholar]
  4. Cowle M. W., Webster G., Babatunde A. O., Bockelmann-Evans B. N., and Weightman A. J. Environ. Technol., 2019, 41, (28), 3732 LINK https://doi.org/10.1080/09593330.2019.1619844 [Google Scholar]
  5. Doğruöz N., Göksay D., Ilhan-Sungur E., and Cotuk A. J. Basic Microbiol., 2009, 49, (S1), S5 LINK https://doi.org/10.1002/jobm.200800250 [Google Scholar]
  6. Fish K. E., and Boxall J. B. Front. Microbiol., 2018, 9, 2519 LINK https://doi.org/10.3389/fmicb.2018.02519 [Google Scholar]
  7. Babič M., Gunde-Cimerman N., Vargha M., Tischner Z., Magyar D., Veríssimo C., Sabino R., Viegas C., Meyer W., and Brandão J. Int. J. Environ. Res. Public Health, 2017, 14, (6), 636 LINK https://doi.org/10.3390/ijerph14060636 [Google Scholar]
  8. Elvers K. T., Leeming K., Moore C. P., and Lappin-Scott H. M. J. Appl. Microbiol., 1998, 84, (4), 607 LINK https://doi.org/10.1046/j.1365-2672.1998.00388.x [Google Scholar]
  9. Ruiz-Sorribas A., Poilvache H., Kamarudin N. H. N., Braem A., and Van Bambeke F. J. Boiadhes. Biofilm Res., 2021, 37, (5), 481 LINK https://doi.org/10.1080/08927014.2021.1919301 [Google Scholar]
  10. Rajala P., Bomberg M., Vepsäläinen M., and Carpén L. Biofouling, 2017, 33, (2), 195 LINK https://doi.org/10.1080/08927014.2017.1285914 [Google Scholar]
  11. Huttunen-Saarivirta E., Rajala P., Marja-aho M., Maukonen J., Sohlberg E., and Carpén L. Bioelectrochemistry, 2018, 120, 27 LINK https://doi.org/10.1016/j.bioelechem.2017.11.002 [Google Scholar]
  12. Marangoni P. R. D., Robl D., Dalzoto P. R., Berton M. A. C., Vicente V. A., and Pimentel I. C. J. Water Res. Hydraul. Eng., 2013, 2, (4), 140 LINK http://paper.academicpub.org/Download?id=14882 [Google Scholar]
  13. Rajala P., Nuppunen-Puputti M., Wheat C. G., and Carpen L. Sci. Total Environ., 2022, 824, 153965 LINK https://doi.org/10.1016/j.scitotenv.2022.153965 [Google Scholar]
  14. Liu R., Zhu J., Yu Z., Joshi D., Zhang H., Lin W., and Yang M. J. Environ. Sci., 2014, 26, (4), 865 LINK https://doi.org/10.1016/s1001-0742(13)60481-7 [Google Scholar]
  15. Afonso T. B., Simoes L. C., and Lima N. Biofouling, 2019, 35, (10), 1041 LINK https://doi.org/10.1080/08927014.2019.1688793 [Google Scholar]
  16. Fernandes S., Simoes L. C., Lima N., and Simões M. Water Res., 2019, 164, 114951 LINK https://doi.org/10.1016/j.watres.2019.114951 [Google Scholar]
  17. Arvanitidou M., Kanellou K., Constantinides T. C., and Katsouyannopoulos V. Lett. Appl. Microbiol., 1999, 29, (2), 81 LINK https://doi.org/10.1046/j.1365-2672.1999.00583.x [Google Scholar]
  18. Hageskal G., Gaustad P., Heier B. T., and Skaar I. J. Appl. Microbiol., 2007, 102, (3), 774 LINK https://doi.org/10.1111/j.1365-2672.2006.03119.x [Google Scholar]
  19. Sammon N. B., Harrower K. M., Fabbro L. D., and Reed R. H. Int. J. Environ. Res. Public Health, 2010, 7, (4), 1597 LINK https://doi.org/10.3390/ijerph7041597 [Google Scholar]
  20. Preciado C. C., Boxall J., Soria-Carrasco V., Martínez S., and Douterelo I. Front. Microbiol., 2021, 12, 658927 LINK https://doi.org/10.3389/fmicb.2021.658927 [Google Scholar]
  21. Minnoş B., Ilhan-Sungur E., Çotuk A., Güngör N. D., and Cansever N. J. Boiadhes. Biofilm Res., 2013, 29, (3), 223 LINK https://doi.org/10.1080/08927014.2012.763117 [Google Scholar]
  22. ‘Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens’, ASTM G1-03(2017)e1, ASTM International, West Conshohocken, USA, 2017, 9 pp LINK https://doi.org/10.1520/G0001-03R17E01 [Google Scholar]
  23. Zhu J., Riskowski G. L., and Mackie R. I. Trans. ASAE, 1999, 42, (3), 777 LINK https://doi.org/10.13031/2013.13241 [Google Scholar]
  24. Hamlaoui Y., Pedraza F., and Tifouti L. Corros. Sci., 2008, 50, (6), 1558 LINK https://doi.org/10.1016/j.corsci.2008.02.010 [Google Scholar]
  25. Reasoner D. J., and Geldreich E. E. Appl. Environ. Microbiol., 1985, 49, (1), 1 LINK https://doi.org/10.1128/aem.49.1.1-7.1985 [Google Scholar]
  26. Gagnon G. A., and Slawson R. M. J. Microbiol. Methods, 1999, 34, (3), 203 LINK https://doi.org/10.1016/s0167-7012(98)00089-x [Google Scholar]
  27. Pereira V. J., Marques R., Marques M., Benoliel M. J., and Barreto Crespo M. T. Water Res., 2013, 47, (2), 517 LINK https://doi.org/10.1016/j.watres.2012.09.052 [Google Scholar]
  28. Barnett H. L., and Hunter B. B. “Illustrated Genera of Imperfect Fungi”, 4th Edn., APS Press, St. Paul, USA, 1998, 218 pp [Google Scholar]
  29. Ellis M. B. “Dematiaceous Hyphomycetes”, The Eastern Press Ltd, London, UK, 1971 [Google Scholar]
  30. Pitt J. I. “A Laboratory Guide to Common Penicillium Species”, 3rd Edn, Food Science Australia, North Ryde, Australia, 2000 [Google Scholar]
  31. Klich M. A. “Identification of Common Aspergillus Species”, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands, 2002, 116 pp [Google Scholar]
  32. White T. J., Bruns T., Lee S., Taylor J., ‘Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics’, in “PCR Protocols: A Guide to Methods and Applications”, eds. Innis M. A., Gelfand D. H., Sninsky J. J., and White T. J. Academic Press Inc, San Diego, USA, 1990, pp 315322 LINK https://doi.org/10.1016/B978-0-12-372180-8.50042-1 [Google Scholar]
  33. Samson R. A., Houbraken J., Thrane U., Frisvad J. C., and Andersen B. “Food and Indoor Fungi”, Vol. 2, CBS Laboratory Manual Series, CBS-KNAW Fungal Diversity Centre Press, Utrecht, The Netherlands, 2010, 390 pp [Google Scholar]
  34. da Costa E. V., Mesquita T. J., Ferreira A., Nogueira R. P., and Bastos I. N. Mater. Res., 2013, 16, (4), 929 LINK https://doi.org/10.1590/s1516-14392013005000088 [Google Scholar]
  35. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., and Roques C. Antimicrob. Agents Chemother., 2002, 46, (5), 1469 LINK https://doi.org/10.1128/aac.46.5.1469-1474.2002 [Google Scholar]
  36. Babich H., and Stotzky G. Appl. Environ. Microbiol., 1978, 36, (6), 906 LINK https://doi.org/10.1128/aem.36.6.906-914.1978 [Google Scholar]
  37. Siqueira V. M., Oliveira H. M. B., Santos C., Paterson R. R. M., Gusmão N. B., and Lima N. Int. J. Environ Res. Public Health, 2011, 8, (2), 456 LINK https://doi.org/10.3390/ijerph8020456 [Google Scholar]
  38. Juzeliûnas E., Ramanauskas R., Lugauskas A., Samulevičienë M., and Leinartas K. Electrochem. Commun., 2005, 7, (3), 305 LINK https://doi.org/10.1016/j.elecom.2005.01.012 [Google Scholar]
  39. Doggett M. S. Appl. Environ. Microbiol., 2000, 66, (3), 1249 LINK https://doi.org/10.1128/aem.66.3.1249-1251.2000 [Google Scholar]
  40. Rajala P., Bomberg M., Huttunen-Saarivirta E., Priha O., Tausa M., and Carpén L. Materials, 2016, 9, (6), 475 LINK https://doi.org/10.3390/ma9060475 [Google Scholar]
  41. Lutterbach M. T. S., and de França F. P. World J. Microbiol. Biotechnol., 1996, 12, (4), 391 LINK https://doi.org/10.1007/bf00340217 [Google Scholar]
  42. Webb J. S., Nixon M., Eastwood I. M., Greenhalgh M., Robson G. D., and Handley P. S. Appl. Environ. Microbiol., 2000, 66, (8), 3194 LINK https://doi.org/10.1128/aem.66.8.3194-3200.2000 [Google Scholar]
  43. Thein Z. M., Seneviratne C. J., Samaranayake Y. H., and Samaranayake L. P. Mycoses, 2009, 52, (6), 467 LINK https://doi.org/10.1111/j.1439-0507.2009.01719.x [Google Scholar]
  44. Del Olmo G., Husband S., Sánchez Briones C., Soriano A., Calero Preciado C., Macian J., and Douterelo I. Sci. Total Environ., 2021, 754, 142016 LINK https://doi.org/10.1016/j.scitotenv.2020.142016 [Google Scholar]
  45. Unsal T., Cansever N., and Ilhan-Sungur E. World J. Microbiol. Biotechnol., 2019, 35, (2), 22 LINK https://doi.org/10.1007/s11274-019-2592-2 [Google Scholar]
  46. Zupančič J., Raghupathi P. K., Houf K., Burmølle M., Sørensen S. J., and Gunde-Cimerman N. Front. Microbiol., 2018, 9, 21 LINK https://doi.org/10.3389/fmicb.2018.00021 [Google Scholar]
  47. Sav H., Rafati H., Öz Y., Dalyan-Cilo B., Ener B., Mohammadi F., Ilkit M., van Diepeningen A., and Seyedmousavi S. J. Fungi, 2018, 4, (1), 16 LINK https://doi.org/10.3390/jof4010016 [Google Scholar]
  48. Siqueira V. M., and Lima N. J. Mycol., 2013, 152941 LINK https://doi.org/10.1155/2013/152941 [Google Scholar]
  49. Priyadarshini E., Priyadarshini S. S., Cousins B. G., and Pradhan N. Chemosphere, 2021, 274, 129976 LINK https://doi.org/10.1016/j.chemosphere.2021.129976 [Google Scholar]
  50. Samson R. A., and Miller J. D. “Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control”, eds. Flannigan B., 2nd Edn., Taylor and Francis Group LLC, Boca Raton, USA, 2011, 540 pp [Google Scholar]
  51. Oliveira V. K. P., Paula C. R., Colombo A. L., Merseguel K. B., Nishikaku A. S., Moreira D., and da Silva Ruiz L. Pediatr. Neonatol., 2014, 55, (1), 75 LINK https://doi.org/10.1016/j.pedneo.2013.07.006 [Google Scholar]
  52. Hugenholtz P., Goebel B. M., and Pace N. R. J. Bacteriol., 1998, 180, (18), 4765 LINK https://doi.org/10.1128/jb.180.18.4765-4774.1998 [Google Scholar]
/content/journals/10.1595/205651323X16748145957998
Loading
/content/journals/10.1595/205651323X16748145957998
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error