Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


The improved bulk and surface function of manufactured implants has advanced implantation procedures, leading to a decline in surgical risks. Many current techniques discussed in the literature are related to additive manufacturing (AM) of lightweight implants based on reliable, precise, flexible scaffolds and capable of mimicking bone properties while incorporating other useful features. These techniques have evolved for the production of a variety of biocompatible materials. AM has progressed beyond prototype to full-scale manufacturing of metals, polymers and ceramic products. However, metallic implants often fail due to biocorrosion and deterioration, limiting implant longevity. This study reviews current trends and approaches to enhancing the surface corrosion resistance of porous metallic implants and the effect of interfacial films on biological activity. The art of porous metallic implants manufactured by AM and their biocorrosion behaviour are discussed. This review also evaluates future trends and perspectives in additively manufactured synthetic orthopaedic implants porous with enhanced surface morphology.


Article metrics loading...

Loading full text...

Full text loading...



  1. Balamurugan A., Rajeswari S., Balossier G., Rebelo A. H. S., and Ferreira J. M. F. Mater. Corros., 2008, 59, (11), 855 LINK [Google Scholar]
  2. Bhishagratna K. K. L., and Bhishagratna K. K. L. “An English Translation of The Sushruta Samhita: Based on the Original Sanskrit Text”, Calcutta, India, 1907 LINK [Google Scholar]
  3. Hulbert S. F., Hench L. L., Forbers D., and Bowman L. S. Ceram. Int., 1982, 8, (4), 131 LINK [Google Scholar]
  4. Radin E. J. Bone Joint Surg., 1989, 71, (6), 957 [Google Scholar]
  5. Munyensanga P., Paryanto P., and Aziz M. N. A. ROTASI, 2019, 20, (4), 249 LINK [Google Scholar]
  6. Harun W. S. W., Kamariah M. S. I. N., Muhamad N., Ghani S. A. C., Ahmad F., and Mohamed Z. Powder Technol., 2018, 327, 128 LINK [Google Scholar]
  7. Zhang L.-C., and Chen L.-Y. Adv. Eng. Mater., 2019, 21, (4), 1801215 LINK [Google Scholar]
  8. Thijs L., Verhaeghe F., Craeghs T., Van Humbeeck J., and Kruth J.-P. Acta Mater., 2010, 58, (9), 3303 LINK [Google Scholar]
  9. ‘Additive Manufacturing: General Principles: Fundamentals and Vocabulary’, ISO/ASTM 52900:2021, International Organization for Standardization, Geneva, Switzerland, November, 2021 LINK [Google Scholar]
  10. Zadpoor A. A. J. Mater. Chem. B, 2019, 7, (26), 4088 LINK [Google Scholar]
  11. Zadpoor A. Int. J. Mol. Sci., 2017, 18, (8), 1607 LINK [Google Scholar]
  12. Chen J.-H., Liu C., You L., and Simmons C. A. J. Biomech., 2010, 43, (1), 108 LINK [Google Scholar]
  13. Li X., Ma X.-Y., Feng Y.-F., Wang L., and Wang C. Compos. Sci. Technol., 2015, 117, 78 LINK [Google Scholar]
  14. Zhang C., Zhang L., Liu L., Lv L., Gao L., Liu N., Wang X., and Ye J. J. Orthop. Surg. Res., 2020, 15, 40 LINK [Google Scholar]
  15. Semba J. A., Mieloch A. A., and Rybka J. D. Bioprinting, 2020, 18, e 00070 LINK [Google Scholar]
  16. ‘Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)’, ASTM F1537-20, ASTM International, West Conshohocken, USA, 29th April, 2020 LINK [Google Scholar]
  17. Kaur M., and Singh K. Mater. Sci. Eng.: C, 2019, 102, 844 LINK [Google Scholar]
  18. ‘How to Design Parts for Metal 3D Printing’, HUBS, Amsterdam, The Netherlands: (Accessed on 24th Otober 2023) [Google Scholar]
  19. Attarilar S., Ebrahimi M., Djavanroodi F., Fu Y., Wang L., and Yang J. Int. J. Bioprint., 2021, 7, (1), 306 LINK [Google Scholar]
  20. Dai N., Zhang L.-C., Zhang J., Chen Q., and Wu M. Corros. Sci., 2016, 102, 484 LINK [Google Scholar]
  21. Li Y., Li W., Bobbert F. S. L., Lietaert K., Dong J., Leeflang M. A., Zhou J., and Zadpoor A. A. Acta Biomater., 2020, 106, 439 LINK [Google Scholar]
  22. Cao Y., Bai P., Liu F., Hou X., and Guo Y. Materials, 2020, 13, (2), 340 LINK [Google Scholar]
  23. Li Y., Jahr H., Zhou J., and Abbas A. Acta Biomater., 2020, 115, 29 LINK [Google Scholar]
  24. DebRoy T., Wei H. L., Zuback J. S., Mukherjee T., Elmer J. W., Milewski J. O., Beese A. M., Wilson-Heid A., De A., and Zhang W. Prog. Mater. Sci., 2018, 92, 112 LINK [Google Scholar]
  25. Li Y., Zhou J., Pavanram P., Leeflang M. A., Fockaert L. I., Pouran B., Tümer N., Schröder K.-U., Mol J. M. C., Weinans H., Jahr H., and Zadpoor A. A. Acta Biomater., 2018, 67, 378 LINK [Google Scholar]
  26. Frazier W. E. J. Mater. Eng. Perform., 2014, 23, (6), 1917 LINK [Google Scholar]
  27. Munsch M., and Brandt M. ‘Laser Additive Manufacturing of Customized Prosthetics and Implants for Biomedical Applications’, in “Laser Additive Manufacturing: Materials, Design, Technologies, and Applications”, ed. Elsevier Ltd, Duxford, UK, 2017, pp. 399420 LINK [Google Scholar]
  28. Suska F., Kjeller G., Tarnow P., Hryha E., Nyborg L., Snis A., and Palmquist A. J. Oral Maxillofac. Surg., 2016, 74, (8), 1706.e 1 LINK [Google Scholar]
  29. AlMangour B., Grzesiak D., and Yang J.-M. Powder Technol., 2017, 309, 37 LINK [Google Scholar]
  30. Qin Y., Wen P., Guo H., Xia D., Zheng Y., Jauer L., Poprawe R., Voshage M., and Schleifenbaum J. H. Acta Biomater., 2019, 98, 3 LINK [Google Scholar]
  31. Zhang X.-Y., Fang G., and Zhou J. Materials, 2017, 10, (1), 50 LINK [Google Scholar]
  32. Utela B., Storti D., Anderson R., and Ganter M. J. Manuf. Process., 2008, 10, (2), 96 LINK [Google Scholar]
  33. Yap C. Y., Chua C. K., Dong Z. L., Liu Z. H., Zhang D. Q., Loh L. E., and Sing S. L. Appl. Phys. Rev., 2015, 2, (4), 041101 LINK [Google Scholar]
  34. Bandyopadhyay A., Traxel K. D., Lang M., Juhasz M., Eliaz N., and Bose S. Mater. Today, 2022, 52, (January–February), 207 LINK [Google Scholar]
  35. Ge W., Guo C., and Lin F. Proc. Eng., 2014, 81, 1192 LINK [Google Scholar]
  36. Qin Y., Wen P., Xia D., Guo H., Voshage M., Jauer L., Zheng Y., Schleifenbaum J. H., and Tian Y. Addit. Manuf., 2020, 33, 101134 LINK [Google Scholar]
  37. Kuo C. N., Chua C. K., Peng P. C., Chen Y. W., Sing S. L., Huang S., and Su Y. L. Virtual Phys. Prototyp., 2020, 15, (1), 120 LINK [Google Scholar]
  38. Koju N., Niraula S., and Fotovvati B. Metals, 2022, 12, (4), 687 LINK [Google Scholar]
  39. Xin X., Chen J., Xiang N., Gong Y., and Wei B. Dent. Mater., 2014, 30, (3), 263 LINK [Google Scholar]
  40. Limmahakhun S., Oloyede A., Sitthiseripratip K., Xiao Y., and Yan C. Mater. Des., 2017, 114, 633 LINK [Google Scholar]
  41. Linxi Z., Quanzhan Y., Guirong Z., Fangxin Z., Gang S., and Bo Y. China Found., 2014, 11, (4), 322 [Google Scholar]
  42. Folkman M., Becker A., Meinster I., Masri M., and Ormianer Z. Sci. Rep., 2020, 10, 12446 LINK [Google Scholar]
  43. Wang H., Su K., Su L., Liang P., Ji P., and Wang C. J. Mech. Behav. Biomed. Mater., 2018, 88, 488 LINK [Google Scholar]
  44. Chen G., Dong C., Yang L., and Lv Y. ACS Appl. Mater. Interfaces, 2015, 7, (29), 15790 LINK [Google Scholar]
  45. Dadkhah M., Mosallanejad M. H., Iuliano L., and Saboori A. Acta Metall. Sin. (English Lett.), 2021, 34, (9), 1173 LINK [Google Scholar]
  46. Singh S., Ramakrishna S., and Singh R. J. Manuf. Process., 2017, 25, 185 LINK [Google Scholar]
  47. Del Guercio G., Galati M., and Saboori A. Met. Mater. Int., 2021, 27, (1), 55 LINK [Google Scholar]
  48. Zhang L.-C., Liu Y., Li S., and Hao Y. Adv. Eng. Mater., 2018, 20, (5), 1 LINK [Google Scholar]
  49. Crovace A. M., Lacitignola L., Forleo D. M., Staffueru F., Francioso E., Di Meo A., Becerra J., Crovace A., and Santos-Ruiz L. Animals, 2020, 10, (8), 1389 LINK [Google Scholar]
  50. Szymczyk-Ziółkowska P., Ziółkowski G., Hoppe V., Rusińska M., Kobiela K., Madeja M., Dziedzic R., Junka A., and Detyna J. J. Manuf. Process., 2022, 76, 175 LINK [Google Scholar]
  51. Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., and Hui D. Compos. Part B: Eng., 2018, 143, 172 LINK [Google Scholar]
  52. Ohtsu N., Suginishi S., and Hirano M. Appl. Surf. Sci., 2017, 405, 215 LINK [Google Scholar]
  53. Kong D., Dong C., Ni X., and Li X. npj Mater. Degrad., 2019, 3, 24 LINK [Google Scholar]
  54. Cissé O., Savadogo O., Wu M., and Yahia L’H. J. Biomed. Mater. Res., 2002, 61, (3), 339 LINK [Google Scholar]
  55. Zhao X., Li S., Zhang M., Liu Y., Sercombe T. B., Wang S., Hao Y., Yang R., and Murr L. E. Mater. Des., 2016, 95, 21 LINK [Google Scholar]
  56. Yang Y., Liu B Y. J., Chen J., Wang H. L., Zhang Z. Q., Lu Y. J., Wu S. Q., and Lin J. X. Mater. Sci. Eng: A, 2017, 707, 548 LINK [Google Scholar]
  57. Chen J.-R., and Tsai W.-T. Electrochim. Acta, 2011, 56, (4), 1746 LINK [Google Scholar]
  58. Stendal J., Fergani O., Yamaguchi H., and Espallargas N. J. Bio- Tribo-Corros., 2018, 4, (1), 9 LINK [Google Scholar]
  59. Mutombo P., and Hackerman N. J. Solid State Electrochem., 1997, 1, (3), 194 LINK [Google Scholar]
  60. Gilroy D., and Conway B. E. J. Phys. Chem., 1965, 69, (4), 1259 LINK [Google Scholar]
  61. Dehghanghadikolaei A., Ibrahim H., Amerinatanzi A., Hashemi M., Moghaddam N. S., and Elahinia M. J. Mater. Sci., 2019, 54, (9), 7333 LINK [Google Scholar]
  62. Dehghanghadikolaei A., and Fotovvati B. Materials, 2019, 12, (11), 1795 LINK [Google Scholar]
  63. Azzouz I., Faure J., Khlifi K., Larbi A. C., and Benhayoune H. Coatings, 2020, 10, (12), 1192 LINK [Google Scholar]
  64. Saini M. World J. Clin. Cases, 2015, 3, (1), 52 LINK [Google Scholar]
  65. Seyeux A., Zanna S., Marcus P., Liengen T., Féron D., Basséguy R., and Beech I. B. ‘Surface Analysis Techniques for Investigating Biocorrosion’, in “Understanding Bicorrosion: Fundamentals and Applications”, eds. European Federation of Corrosion Publications No. 66,Woodhead Publishing Ltd, Sawston, UK, 2014, pp. 197212 LINK [Google Scholar]
  66. Hong D., Chou D.-T., Velikokhatnyi O. I., Roy A., Lee B., Swink I., Issaev I., Kuhn H. A., and Kumta P. N. Acta Biomater., 2016, 45, 375 LINK [Google Scholar]
  67. Bryant M., and Neville A. Orthop. Trauma, 2016, 30, (3), 176 LINK [Google Scholar]
  68. Ali S., Rani A. M. A., Baig Z., Ahmed S. W., Hussain G., Subramaniam K., Hastuty S., L T. V. V., and Rao N. Corros. Rev., 2020, 38, (5), 381 LINK [Google Scholar]
  69. Prasad K., Bazaka O., Chua M., Rochford M., Fedrick L., Spoor J., Symes R., Tieppo M., Collins C., Cao A., Markwell D., Ostrikov K., and Bazaka K. Materials, 2017, 10, (8), 884 LINK [Google Scholar]
  70. Hallab N. J., Jacobs J. J., Ratner B. D., Hoffman A. S., Schoen F. J., and Lemons J. E. ‘Orthopedic Applications’, in “Biomaterials Science: An Introduction to Materials in Medicine”, eds. Elsevier Inc, Waltham, USA, 2013, pp. 841882 LINK [Google Scholar]
  71. ‘Pitting Corrosion’, Association for Materials Protection and Peformance (AMPP), Houston, USA: (Accessed on 20th October 2023) [Google Scholar]
  72. ‘Eight Forms of Corrosion’, Corrosion Doctor: (Accessed on 20th October 2023) [Google Scholar]
  73. Vetter K. J. Electrochim. Acta, 1971, 16, (11), 1923 LINK [Google Scholar]
  74. Dorozhkin S. V. Acta Biomater., 2014, 10, (7), 2919 LINK [Google Scholar]
  75. Radin E. J. Bone Joint Surg., 1989, 71, (6), 957 LINK [Google Scholar]
  76. Bano S., Akhtar M., Yasir M., Maqbool M. S., Niaz A., Wadood A., and Rehman M. A. Ur. Gels, 2021, 7, (2), 34 LINK [Google Scholar]
  77. Cinitha A., Umesha P. K., and Iyer N. R. KSCE J. Civ. Eng., 2014, 18, (6), 1735 LINK [Google Scholar]
  78. Singh B., Singh G., and Sidhu B. S. J. Therm. Spray Technol., 2018, 27, (8), 1401 LINK [Google Scholar]
  79. Brown J. H. U., Jacobs J. E., Stark L., and Davis Co F. A. “Biomedical Engineering”, Philadelphia, USA, 1970 [Google Scholar]
  80. Zhang L.-C., and Attar H. Adv. Eng. Mater., 2016, 18, (4), 463 LINK [Google Scholar]
  81. Ataee A., Li Y., and Wen C. Acta Biomater., 2019, 97, 587 LINK [Google Scholar]
  82. Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Silva F. S., Carvalho O., and Miranda G. Trans. Nonferrous Met. Soc. China, 2017, 27, (4), 829 LINK [Google Scholar]
  83. Dargusch M. S., Wang G., Kent D., Bermingham M., Venezuela J., Frith J. E., Yu Z., Yu S., and Shi Z. ACS Biomater. Sci. Eng., 2019, 5, (11), 5844 LINK [Google Scholar]
  84. Zhao B., Wang H., Qiao N., Wang C., and Hu M. Mater. Sci. Eng.: C, 2017, 70, (1), 832 LINK [Google Scholar]
  85. Zadeh M. K., Yeganeh M., Shoushtari M. T., Ramezanalizadeh H., and Seidi F. Mater. Today Commun., 2022, 31, 103502 LINK [Google Scholar]
  86. Liverani E., Toschi S., Ceschini L., and Fortunato A. J. Mater. Process. Technol., 2017, 249, 255 LINK [Google Scholar]
  87. Gittens R. A., Olivares-Navarrete R., Tannenbaum R., Boyan B. D., and Schwartz Z. J. Dent. Res., 2011, 90, (12), 1389 LINK [Google Scholar]
  88. Heimann R. B. Metals, 2017, 7, (11), 468 LINK [Google Scholar]
  89. Hernández H. H., Reynoso A. M. R., González J. C. T., Morán C. O. G., Hernández J. G. M., Ruiz A. M., Hernández J. M., Cruz R. O., El-Azazy M., Min M., and Annus P. ‘Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels’, in “Electrochemical Impedance Spectroscopy”, eds. IntechOpen, London, UK, 2020, 35 pp LINK [Google Scholar]
  90. Brezinová J., Hudák R., Guzanová A., Draganovská D., Ižaríková G., and Koncz J. Metals, 2016, 6, (7), 171 LINK [Google Scholar]
  91. Marattukalam J. J., Singh A. K., Datta S., Das M., Balla V. K., Bontha S., and Kalpathy S. K. Mater. Sci. Eng.: C, 2015, 57, 309 LINK [Google Scholar]
  92. ‘Sand Inclusion, Sand Hole’, Liaoning Borui Machinery Co Ltd, Dandong, China, 26th September, 2021 LINK [Google Scholar]
  93. Shaeri Karimi M. H., Yeganeh M., Alavi Zaree S. R., and Eskandari M. Opt. Laser Technol., 2021, 138, 106918 LINK [Google Scholar]
  94. Inoue T., Totten G., Howes M., and Inoue T. ‘Metallo-Thermo-Mechanics–Application to Quenching’, in “Handbook of Residual Stress and Deformation of Steel”, eds. ASM International, Materials Park, USA, 2002, pp. 296311 [Google Scholar]
  95. Boschetto A., Bottini L., and Veniali F. J. Mater. Process. Technol., 2017, 241, 154 LINK [Google Scholar]
  96. Strano G., Hao L., Everson R. M., and Evans K. E. J. Mater. Process. Technol., 2013, 213, (4), 589 LINK [Google Scholar]
  97. Gerashi E., Alizadeh R., and Langdon T. G. J. Magnes. Alloy., 2022, 10, (2), 313 LINK [Google Scholar]
  98. Wang J., and Li H. Mater. Res. Express, 2019, 6, (6), 066508 LINK [Google Scholar]
  99. Leon A., and Aghion E. Mater. Charact., 2017, 131, 188 LINK [Google Scholar]
  100. Zheng Y. F., Gu X. N., and Witte F. Mater. Sci. Eng. R: Rep., 2014, 77, 1 LINK [Google Scholar]
  101. Maximenko A. L., and Olevsky E. A. Scr. Mater., 2018, 149, 75 LINK [Google Scholar]
  102. Sander G., Thomas S., Cruz V., Jurg M., Birbilis N., Gao X., Brameld M., and Hutchinson C. R. J. Electrochem C. Soc, 2017, 164, (6), C 250 LINK [Google Scholar]
  103. Schaller R. F., Taylor J. M., Rodelas J., and Schindelholz E. J. Corrosion, 2017, 73, (7), 796 LINK [Google Scholar]
  104. Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., and Shen L. J. Mater. Sci. Technol., 2019, 35, (7), 1284 LINK [Google Scholar]
  105. Ran Q., Yang W., Hu Y., Shen X., Yu Y., Xiang Y., and Cai K. J. Mech. Behav. Biomed. Mater., 2018, 84, 1 LINK [Google Scholar]
  106. Wauthle R., van der Stok J., Amin Yavari S., Van Humbeeck J., Kruth J.-P., Zadpoor A. A., Weinans H., Mulier M., and Schrooten J. Acta Biomater., 2015, 14, 217 LINK [Google Scholar]
  107. Maamoun A. H., Xue Y. F., Elbestawi M. A., and Veldhuis S. C. Materials, 2018, 11, (12), 2343 LINK [Google Scholar]
  108. Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P. D., and Thomas S. Corros. Sci., 2020, 164, 108314 LINK [Google Scholar]
  109. Gorsse S., Hutchinson C., Gouné M., and Banerjee R. Sci. Technol. Adv. Mater., 2017, 18, (1), 584 LINK [Google Scholar]
  110. Ashby M. F. Philos. Trans. R. Soc. A, 2006, 364, (1838), 15 LINK [Google Scholar]
  111. Taniguchi N., Fujibayashi S., Takemoto M., Sasaki K., Otsuki B., Nakamura T., Matsushita T., Kokubo T., and Matsuda S. Mater. Sci. Eng.: C, 2016, 59, 690 LINK [Google Scholar]
  112. Otsuki B., Takemoto M., Fujibayashi S., Neo M., Kokubo T., and Nakamura T. Biomaterials, 2006, 27, (35), 5892 LINK [Google Scholar]
  113. Van Bael S., Chai Y. C., Truscello S., Moesen M., Kerckhofs G., Van Oosterwyck H., Kruth J.-P., and Schrooten J. Acta Biomater., 2012, 8, (7), 2824 LINK [Google Scholar]
  114. Haeri S., Wang Y., Ghita O., and Sun J. Powder Technol., 2017, 306, 45 LINK [Google Scholar]
  115. Barile C., Casavola C., Campanelli S. L., and Renna G. Eng. Fail. Anal., 2019, 95, 273 LINK [Google Scholar]
  116. Hansen D. C. Electrochem. Soc. Interface, 2008, 17, (2), 31 LINK [Google Scholar]
  117. Kraus T., Fischerauer S. F., Hänzi A. C., Uggowitzer P. J., Löffler J. F., and Weinberg A. M. Acta Biomater., 2012, 8, (3), 1230 LINK [Google Scholar]
  118. Moghadasi K., Mohd Isa M. S., Ariffin M. A., Mohd jamil M. Z., Raja S., Wu B., Yamani M., Bin Muhamad M. R., Yusof F., Jamaludin M. F., bin Ab Karim M. S., binti Abdul Razak B., and bin Yusoff N. J. Mater. Res. Technol., 2022, 17, 1054 LINK [Google Scholar]
  119. Learmonth I. D., Young C., and Rorabeck C. Lancet, 2007, 370, (9597), 1508 LINK [Google Scholar]
  120. Ahmadi S. M., Hedayati R., Li Y., Lietaert K., Tümer N., Fatemi A., Rans C. D., Pouran B., Weinans H., and Zadpoor A. A. Acta Biomater., 2018, 65, 292 LINK [Google Scholar]
  121. Otero E., Pardo A., Sáenz E., Utrilla M. V., and Pérez F. J. Can. Metall. Quart., 1997, 36, (1), 65 LINK [Google Scholar]
  122. Li Y., Jahr H., Lietaert K., Pavanram P., Yilmaz A., Fockaert L. I., Leeflang M. A., Pouran B., Gonzalez-Garcia Y., Weinans H., Mol J. M. C., Zhou J., and Zadpoor A. A. Acta Biomater., 2018, 77, 380 LINK [Google Scholar]
  123. Li Y., Pavanram P., Zhou J., Lietaert K., Bobbert F. S. L., Kubo Y., Leeflang M. A., Jahr H., and Zadpoor A. A. Biomater. Sci., 2020, 8, (9), 2404 LINK [Google Scholar]
  124. Zhou L., Yuan T., Tang J., He J., and Li R. Opt. Laser Technol., 2019, 119, 105625 LINK [Google Scholar]
  125. Ataee A., Li Y., Brandt M., and Wen C. Acta Mater., 2018, 158, 354 LINK [Google Scholar]
  126. Oliver J. N., Su Y., Lu X., Kuo P.-H., Du J., and Zhu D. Bioact. Mater., 2019, 4, 261 LINK [Google Scholar]
  127. Lopez-Esteban S., Saiz E., Fujino S., Oku T., Suganuma K., and Tomsia A. P. J. Eur. Ceram. Soc., 2003, 23, (15), 2921 LINK [Google Scholar]
  128. Harrop J. ‘3D Printing Materials 2015–2025: Status, Opportunities, Market Forecasts: Pricing, Properties and Projections for Materials Including Photopolymers, Thermoplastics and Metal Powders’, IDTechEx, Cambridge, UK: (Accessed on 20th October 2023) [Google Scholar]
  129. Kocovic P. ‘History of Additive Manufacturing’, in “3D Printing and Its Impact on the Production of Fully Functional Components: Emerging Research and Opportunities”, ch. 1, IGI Global, Hershey, USA, 2017, pp. 124 LINK [Google Scholar]
  130. Cazzola M., Ferraris S., Boschetto F., Rondinella A., Marin E., Zhu W., Pezzotti G., Vernè E., and Spriano S. Int. J. Mol. Sci., 2018, 19, (8), 2255 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error