Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

The improved bulk and surface function of manufactured implants has advanced implantation procedures, leading to a decline in surgical risks. Many current techniques discussed in the literature are related to additive manufacturing (AM) of lightweight implants based on reliable, precise, flexible scaffolds and capable of mimicking bone properties while incorporating other useful features. These techniques have evolved for the production of a variety of biocompatible materials. AM has progressed beyond prototype to full-scale manufacturing of metals, polymers and ceramic products. However, metallic implants often fail due to biocorrosion and deterioration, limiting implant longevity. This study reviews current trends and approaches to enhancing the surface corrosion resistance of porous metallic implants and the effect of interfacial films on biological activity. The art of porous metallic implants manufactured by AM and their biocorrosion behaviour are discussed. This review also evaluates future trends and perspectives in additively manufactured synthetic orthopaedic implants porous with enhanced surface morphology.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16826780236175
2023-04-28
2025-01-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/ElMabrouk2_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16826780236175&mimeType=html&fmt=ahah

References

  1. A. Balamurugan, S. Rajeswari, G. Balossier, A. H. S. Rebelo, J. M. F. Ferreira, Mater. Corros., 2008, 59, (11), 855 LINK https://doi.org/10.1002/maco.200804173 [Google Scholar]
  2. K. K. L. Bhishagratna, K. K. L. Bhishagratna, “An English Translation of The Sushruta Samhita: Based on the Original Sanskrit Text”, Calcutta, India, 1907 LINK https://wellcomecollection.org/works/vnqskk8w [Google Scholar]
  3. S. F. Hulbert, L. L. Hench, D. Forbers, L. S. Bowman, Ceram. Int., 1982, 8, (4), 131 LINK https://doi.org/10.1016/0272-8842(82)90003-7 [Google Scholar]
  4. E. Radin, J. Bone Joint Surg., 1989, 71, (6), 957 [Google Scholar]
  5. P. Munyensanga, P. Paryanto, M. N. A. Aziz, ROTASI, 2019, 20, (4), 249 LINK https://doi.org/10.14710/rotasi.20.4.249-257 [Google Scholar]
  6. W. S. W. Harun, M. S. I. N. Kamariah, N. Muhamad, S. A. C. Ghani, F. Ahmad, Z. Mohamed, Powder Technol., 2018, 327, 128 LINK https://doi.org/10.1016/j.powtec.2017.12.058 [Google Scholar]
  7. L.-C. Zhang, L.-Y. Chen, Adv. Eng. Mater., 2019, 21, (4), 1801215 LINK https://doi.org/10.1002/adem.201801215 [Google Scholar]
  8. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.-P. Kruth, Acta Mater., 2010, 58, (9), 3303 LINK https://doi.org/10.1016/j.actamat.2010.02.004 [Google Scholar]
  9. ‘Additive Manufacturing: General Principles: Fundamentals and Vocabulary’, ISO/ASTM 52900:2021, International Organization for Standardization, Geneva, Switzerland, November, 2021 LINK https://www.iso.org/standard/74514.html [Google Scholar]
  10. A. A. Zadpoor, J. Mater. Chem. B, 2019, 7, (26), 4088 LINK https://doi.org/10.1039/c9tb00420c [Google Scholar]
  11. A. Zadpoor, Int. J. Mol. Sci., 2017, 18, (8), 1607 LINK https://doi.org/10.3390/ijms18081607 [Google Scholar]
  12. J.-H. Chen, C. Liu, L. You, C. A. Simmons, J. Biomech., 2010, 43, (1), 108 LINK https://doi.org/10.1016/j.jbiomech.2009.09.016 [Google Scholar]
  13. X. Li, X.-Y. Ma, Y.-F. Feng, L. Wang, C. Wang, Compos. Sci. Technol., 2015, 117, 78 LINK https://doi.org/10.1016/j.compscitech.2015.05.019 [Google Scholar]
  14. C. Zhang, L. Zhang, L. Liu, L. Lv, L. Gao, N. Liu, X. Wang, J. Ye, J. Orthop. Surg. Res., 2020, 15, 40 LINK https://doi.org/10.1186/s13018-019-1489-y [Google Scholar]
  15. J. A. Semba, A. A. Mieloch, J. D. Rybka, Bioprinting, 2020, 18, e 00070 LINK https://doi.org/10.1016/j.bprint.2019.e00070 [Google Scholar]
  16. ‘Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)’, ASTM F1537-20, ASTM International, West Conshohocken, USA, 29th April, 2020 LINK https://www.astm.org/f1537-20.html [Google Scholar]
  17. M. Kaur, K. Singh, Mater. Sci. Eng.: C, 2019, 102, 844 LINK https://doi.org/10.1016/j.msec.2019.04.064 [Google Scholar]
  18. ‘How to Design Parts for Metal 3D Printing’, HUBS, Amsterdam, The Netherlands:https://www.hubs.com/knowledge-base/how-design-parts-metal-3d-printing/ (Accessed on 24th Otober 2023) [Google Scholar]
  19. S. Attarilar, M. Ebrahimi, F. Djavanroodi, Y. Fu, L. Wang, J. Yang, Int. J. Bioprint., 2021, 7, (1), 306 LINK https://doi.org/10.18063/ijb.v7i1.306 [Google Scholar]
  20. N. Dai, L.-C. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci., 2016, 102, 484 LINK https://doi.org/10.1016/j.corsci.2015.10.041 [Google Scholar]
  21. Y. Li, W. Li, F. S. L. Bobbert, K. Lietaert, J. Dong, M. A. Leeflang, J. Zhou, A. A. Zadpoor, Acta Biomater., 2020, 106, 439 LINK https://doi.org/10.1016/j.actbio.2020.02.001 [Google Scholar]
  22. Y. Cao, P. Bai, F. Liu, X. Hou, Y. Guo, Materials, 2020, 13, (2), 340 LINK https://doi.org/10.3390/ma13020340 [Google Scholar]
  23. Y. Li, H. Jahr, J. Zhou, A. Abbas, Acta Biomater., 2020, 115, 29 LINK https://doi.org/10.1016/j.actbio.2020.08.018 [Google Scholar]
  24. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci., 2018, 92, 112 LINK https://doi.org/10.1016/j.pmatsci.2017.10.001 [Google Scholar]
  25. Y. Li, J. Zhou, P. Pavanram, M. A. Leeflang, L. I. Fockaert, B. Pouran, N. Tümer, K.-U. Schröder, J. M. C. Mol, H. Weinans, H. Jahr, A. A. Zadpoor, Acta Biomater., 2018, 67, 378 LINK https://doi.org/10.1016/j.actbio.2017.12.008 [Google Scholar]
  26. W. E. Frazier, J. Mater. Eng. Perform., 2014, 23, (6), 1917 LINK https://doi.org/10.1007/s11665-014-0958-z [Google Scholar]
  27. M. Munsch, M. Brandt, ‘Laser Additive Manufacturing of Customized Prosthetics and Implants for Biomedical Applications’, in “Laser Additive Manufacturing: Materials, Design, Technologies, and Applications”, ed. Elsevier Ltd, Duxford, UK, 2017, pp. 399420 LINK https://doi.org/10.1016/B978-0-08-100433-3.00015-4 [Google Scholar]
  28. F. Suska, G. Kjeller, P. Tarnow, E. Hryha, L. Nyborg, A. Snis, A. Palmquist, J. Oral Maxillofac. Surg., 2016, 74, (8), 1706.e 1 LINK https://doi.org/10.1016/j.joms.2016.03.046 [Google Scholar]
  29. B. AlMangour, D. Grzesiak, J.-M. Yang, Powder Technol., 2017, 309, 37 LINK https://doi.org/10.1016/j.powtec.2016.12.073 [Google Scholar]
  30. Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J. H. Schleifenbaum, Acta Biomater., 2019, 98, 3 LINK https://doi.org/10.1016/j.actbio.2019.04.046 [Google Scholar]
  31. X.-Y. Zhang, G. Fang, J. Zhou, Materials, 2017, 10, (1), 50 LINK https://doi.org/10.3390/ma10010050 [Google Scholar]
  32. B. Utela, D. Storti, R. Anderson, M. Ganter, J. Manuf. Process., 2008, 10, (2), 96 LINK https://doi.org/10.1016/j.jmapro.2009.03.002 [Google Scholar]
  33. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, S. L. Sing, Appl. Phys. Rev., 2015, 2, (4), 041101 LINK https://doi.org/10.1063/1.4935926 [Google Scholar]
  34. A. Bandyopadhyay, K. D. Traxel, M. Lang, M. Juhasz, N. Eliaz, S. Bose, Mater. Today, 2022, 52, (January–February), 207 LINK https://doi.org/10.1016/j.mattod.2021.11.026 [Google Scholar]
  35. W. Ge, C. Guo, F. Lin, Proc. Eng., 2014, 81, 1192 LINK https://doi.org/10.1016/j.proeng.2014.10.096 [Google Scholar]
  36. Y. Qin, P. Wen, D. Xia, H. Guo, M. Voshage, L. Jauer, Y. Zheng, J. H. Schleifenbaum, Y. Tian, Addit. Manuf., 2020, 33, 101134 LINK https://doi.org/10.1016/j.addma.2020.101134 [Google Scholar]
  37. C. N. Kuo, C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, Y. L. Su, Virtual Phys. Prototyp., 2020, 15, (1), 120 LINK https://doi.org/10.1080/17452759.2019.1698967 [Google Scholar]
  38. N. Koju, S. Niraula, B. Fotovvati, Metals, 2022, 12, (4), 687 LINK https://doi.org/10.3390/met12040687 [Google Scholar]
  39. X. Xin, J. Chen, N. Xiang, Y. Gong, B. Wei, Dent. Mater., 2014, 30, (3), 263 LINK https://doi.org/10.1016/j.dental.2013.11.013 [Google Scholar]
  40. S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, Mater. Des., 2017, 114, 633 LINK https://doi.org/10.1016/j.matdes.2016.11.090 [Google Scholar]
  41. Z. Linxi, Y. Quanzhan, Z. Guirong, Z. Fangxin, S. Gang, Y. Bo, China Found., 2014, 11, (4), 322 [Google Scholar]
  42. M. Folkman, A. Becker, I. Meinster, M. Masri, Z. Ormianer, Sci. Rep., 2020, 10, 12446 LINK https://doi.org/10.1038/s41598-020-69455-4 [Google Scholar]
  43. H. Wang, K. Su, L. Su, P. Liang, P. Ji, C. Wang, J. Mech. Behav. Biomed. Mater., 2018, 88, 488 LINK https://doi.org/10.1016/j.jmbbm.2018.08.049 [Google Scholar]
  44. G. Chen, C. Dong, L. Yang, Y. Lv, ACS Appl. Mater. Interfaces, 2015, 7, (29), 15790 LINK https://doi.org/10.1021/acsami.5b02662 [Google Scholar]
  45. M. Dadkhah, M. H. Mosallanejad, L. Iuliano, A. Saboori, Acta Metall. Sin. (English Lett.), 2021, 34, (9), 1173 LINK https://doi.org/10.1007/s40195-021-01249-7 [Google Scholar]
  46. S. Singh, S. Ramakrishna, R. Singh, J. Manuf. Process., 2017, 25, 185 LINK https://doi.org/10.1016/j.jmapro.2016.11.006 [Google Scholar]
  47. G. Del Guercio, M. Galati, A. Saboori, Met. Mater. Int., 2021, 27, (1), 55 LINK https://doi.org/10.1007/s12540-020-00745-2 [Google Scholar]
  48. L.-C. Zhang, Y. Liu, S. Li, Y. Hao, Adv. Eng. Mater., 2018, 20, (5), 1 LINK https://doi.org/10.1002/adem.201700842 [Google Scholar]
  49. A. M. Crovace, L. Lacitignola, D. M. Forleo, F. Staffueru, E. Francioso, A. Di Meo, J. Becerra, A. Crovace, L. Santos-Ruiz, Animals, 2020, 10, (8), 1389 LINK https://doi.org/10.3390/ani10081389 [Google Scholar]
  50. P. Szymczyk-Ziółkowska, G. Ziółkowski, V. Hoppe, M. Rusińska, K. Kobiela, M. Madeja, R. Dziedzic, A. Junka, J. Detyna, J. Manuf. Process., 2022, 76, 175 LINK https://doi.org/10.1016/j.jmapro.2022.02.011 [Google Scholar]
  51. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, Compos. Part B: Eng., 2018, 143, 172 LINK https://doi.org/10.1016/j.compositesb.2018.02.012 [Google Scholar]
  52. N. Ohtsu, S. Suginishi, M. Hirano, Appl. Surf. Sci., 2017, 405, 215 LINK https://doi.org/10.1016/j.apsusc.2017.02.037 [Google Scholar]
  53. D. Kong, C. Dong, X. Ni, X. Li, npj Mater. Degrad., 2019, 3, 24 LINK https://doi.org/10.1038/s41529-019-0086-1 [Google Scholar]
  54. O. Cissé, O. Savadogo, M. Wu, L’H. Yahia, J. Biomed. Mater. Res., 2002, 61, (3), 339 LINK https://doi.org/10.1002/jbm.10114 [Google Scholar]
  55. X. Zhao, S. Li, M. Zhang, Y. Liu, T. B. Sercombe, S. Wang, Y. Hao, R. Yang, L. E. Murr, Mater. Des., 2016, 95, 21 LINK https://doi.org/10.1016/J.MATDES.2015.12.135 [Google Scholar]
  56. Y. Yang, Y. J. Liu B, J. Chen, H. L. Wang, Z. Q. Zhang, Y. J. Lu, S. Q. Wu, J. X. Lin, Mater. Sci. Eng: A, 2017, 707, 548 LINK https://doi.org/10.1016/j.msea.2017.09.068 [Google Scholar]
  57. J.-R. Chen, W.-T. Tsai, Electrochim. Acta, 2011, 56, (4), 1746 LINK https://doi.org/10.1016/j.electacta.2010.10.024 [Google Scholar]
  58. J. Stendal, O. Fergani, H. Yamaguchi, N. Espallargas, J. Bio- Tribo-Corros., 2018, 4, (1), 9 LINK https://doi.org/10.1007/s40735-017-0125-9 [Google Scholar]
  59. P. Mutombo, N. Hackerman, J. Solid State Electrochem., 1997, 1, (3), 194 LINK https://doi.org/10.1007/s100080050048 [Google Scholar]
  60. D. Gilroy, B. E. Conway, J. Phys. Chem., 1965, 69, (4), 1259 LINK https://doi.org/10.1021/j100888a028 [Google Scholar]
  61. A. Dehghanghadikolaei, H. Ibrahim, A. Amerinatanzi, M. Hashemi, N. S. Moghaddam, M. Elahinia, J. Mater. Sci., 2019, 54, (9), 7333 LINK https://doi.org/10.1007/s10853-019-03375-1 [Google Scholar]
  62. A. Dehghanghadikolaei, B. Fotovvati, Materials, 2019, 12, (11), 1795 LINK https://doi.org/10.3390/ma12111795 [Google Scholar]
  63. I. Azzouz, J. Faure, K. Khlifi, A. C. Larbi, H. Benhayoune, Coatings, 2020, 10, (12), 1192 LINK https://doi.org/10.3390/coatings10121192 [Google Scholar]
  64. M. Saini, World J. Clin. Cases, 2015, 3, (1), 52 LINK https://doi.org/10.12998/wjcc.v3.i1.52 [Google Scholar]
  65. A. Seyeux, S. Zanna, P. Marcus, T. Liengen, D. Féron, R. Basséguy, I. B. Beech, ‘Surface Analysis Techniques for Investigating Biocorrosion’, in “Understanding Bicorrosion: Fundamentals and Applications”, eds. European Federation of Corrosion Publications No. 66,Woodhead Publishing Ltd, Sawston, UK, 2014, pp. 197212 LINK https://doi.org/10.1533/9781782421252.2.197 [Google Scholar]
  66. D. Hong, D.-T. Chou, O. I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H. A. Kuhn, P. N. Kumta, Acta Biomater., 2016, 45, 375 LINK https://doi.org/10.1016/j.actbio.2016.08.032 [Google Scholar]
  67. M. Bryant, A. Neville, Orthop. Trauma, 2016, 30, (3), 176 LINK https://doi.org/10.1016/j.mporth.2016.04.010 [Google Scholar]
  68. S. Ali, A. M. A. Rani, Z. Baig, S. W. Ahmed, G. Hussain, K. Subramaniam, S. Hastuty, T. V. V. L, N. Rao, Corros. Rev., 2020, 38, (5), 381 LINK https://doi.org/10.1515/corrrev-2020-0001 [Google Scholar]
  69. K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K. Ostrikov, K. Bazaka, Materials, 2017, 10, (8), 884 LINK https://doi.org/10.3390/ma10080884 [Google Scholar]
  70. N. J. Hallab, J. J. Jacobs, B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, ‘Orthopedic Applications’, in “Biomaterials Science: An Introduction to Materials in Medicine”, eds. Elsevier Inc, Waltham, USA, 2013, pp. 841882 LINK https://doi.org/10.1016/B978-0-08-087780-8.00073-5 [Google Scholar]
  71. ‘Pitting Corrosion’, Association for Materials Protection and Peformance (AMPP), Houston, USA:https://www.ampp.org/technical-research/impact/corrosion-basics/group-1/pitting-corrosion (Accessed on 20th October 2023) [Google Scholar]
  72. ‘Eight Forms of Corrosion’, Corrosion Doctor:https://corrosion-doctors.org/Corrosion-History/Eight.htm (Accessed on 20th October 2023) [Google Scholar]
  73. K. J. Vetter, Electrochim. Acta, 1971, 16, (11), 1923 LINK https://doi.org/10.1016/0013-4686(71)85147-2 [Google Scholar]
  74. S. V. Dorozhkin, Acta Biomater., 2014, 10, (7), 2919 LINK https://doi.org/10.1016/j.actbio.2014.02.026 [Google Scholar]
  75. E. Radin, J. Bone Joint Surg., 1989, 71, (6), 957 LINK https://doi.org/10.2106/00004623-198971060-00033 [Google Scholar]
  76. S. Bano, M. Akhtar, M. Yasir, M. S. Maqbool, A. Niaz, A. Wadood, M. A. Ur. Rehman, Gels, 2021, 7, (2), 34 LINK https://doi.org/10.3390/gels7020034 [Google Scholar]
  77. A. Cinitha, P. K. Umesha, N. R. Iyer, KSCE J. Civ. Eng., 2014, 18, (6), 1735 LINK https://doi.org/10.1007/s12205-014-0362-0 [Google Scholar]
  78. B. Singh, G. Singh, B. S. Sidhu, J. Therm. Spray Technol., 2018, 27, (8), 1401 LINK https://doi.org/10.1007/s11666-018-0786-z [Google Scholar]
  79. J. H. U. Brown, J. E. Jacobs, L. Stark, F. A. Davis Co, “Biomedical Engineering”, Philadelphia, USA, 1970 [Google Scholar]
  80. L.-C. Zhang, H. Attar, Adv. Eng. Mater., 2016, 18, (4), 463 LINK https://doi.org/10.1002/adem.201500419 [Google Scholar]
  81. A. Ataee, Y. Li, C. Wen, Acta Biomater., 2019, 97, 587 LINK https://doi.org/10.1016/j.actbio.2019.08.008 [Google Scholar]
  82. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, F. S. Silva, O. Carvalho, G. Miranda, Trans. Nonferrous Met. Soc. China, 2017, 27, (4), 829 LINK https://doi.org/10.1016/S1003-6326(17)60060-8 [Google Scholar]
  83. M. S. Dargusch, G. Wang, D. Kent, M. Bermingham, J. Venezuela, J. E. Frith, Z. Yu, S. Yu, Z. Shi, ACS Biomater. Sci. Eng., 2019, 5, (11), 5844 LINK https://doi.org/10.1021/acsbiomaterials.9b00596 [Google Scholar]
  84. B. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu, Mater. Sci. Eng.: C, 2017, 70, (1), 832 LINK https://doi.org/10.1016/j.msec.2016.07.045 [Google Scholar]
  85. M. K. Zadeh, M. Yeganeh, M. T. Shoushtari, H. Ramezanalizadeh, F. Seidi, Mater. Today Commun., 2022, 31, 103502 LINK https://doi.org/10.1016/j.mtcomm.2022.103502 [Google Scholar]
  86. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Technol., 2017, 249, 255 LINK https://doi.org/10.1016/j.jmatprotec.2017.05.042 [Google Scholar]
  87. R. A. Gittens, R. Olivares-Navarrete, R. Tannenbaum, B. D. Boyan, Z. Schwartz, J. Dent. Res., 2011, 90, (12), 1389 LINK https://doi.org/10.1177/0022034511408428 [Google Scholar]
  88. R. B. Heimann, Metals, 2017, 7, (11), 468 LINK https://doi.org/10.3390/MET7110468 [Google Scholar]
  89. H. H. Hernández, A. M. R. Reynoso, J. C. T. González, C. O. G. Morán, J. G. M. Hernández, A. M. Ruiz, J. M. Hernández, R. O. Cruz, M. El-Azazy, M. Min, P. Annus, ‘Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels’, in “Electrochemical Impedance Spectroscopy”, eds. IntechOpen, London, UK, 2020, 35 pp LINK https://doi.org/10.5772/intechopen.94470 [Google Scholar]
  90. J. Brezinová, R. Hudák, A. Guzanová, D. Draganovská, G. Ižaríková, J. Koncz, Metals, 2016, 6, (7), 171 LINK https://doi.org/10.3390/met6070171 [Google Scholar]
  91. J. J. Marattukalam, A. K. Singh, S. Datta, M. Das, V. K. Balla, S. Bontha, S. K. Kalpathy, Mater. Sci. Eng.: C, 2015, 57, 309 LINK https://doi.org/10.1016/j.msec.2015.07.067 [Google Scholar]
  92. ‘Sand Inclusion, Sand Hole’, Liaoning Borui Machinery Co Ltd, Dandong, China, 26th September, 2021 LINK https://www.iron-foundry.com/sand-inclusion-hole.html [Google Scholar]
  93. M. H. Shaeri Karimi, M. Yeganeh, S. R. Alavi Zaree, M. Eskandari, Opt. Laser Technol., 2021, 138, 106918 LINK https://doi.org/10.1016/j.optlastec.2021.106918 [Google Scholar]
  94. T. Inoue, G. Totten, M. Howes, T. Inoue, ‘Metallo-Thermo-Mechanics–Application to Quenching’, in “Handbook of Residual Stress and Deformation of Steel”, eds. ASM International, Materials Park, USA, 2002, pp. 296311 [Google Scholar]
  95. A. Boschetto, L. Bottini, F. Veniali, J. Mater. Process. Technol., 2017, 241, 154 LINK https://doi.org/10.1016/j.jmatprotec.2016.11.013 [Google Scholar]
  96. G. Strano, L. Hao, R. M. Everson, K. E. Evans, J. Mater. Process. Technol., 2013, 213, (4), 589 LINK https://doi.org/10.1016/j.jmatprotec.2012.11.011 [Google Scholar]
  97. E. Gerashi, R. Alizadeh, T. G. Langdon, J. Magnes. Alloy., 2022, 10, (2), 313 LINK https://doi.org/10.1016/j.jma.2021.09.009 [Google Scholar]
  98. J. Wang, H. Li, Mater. Res. Express, 2019, 6, (6), 066508 LINK https://doi.org/10.1088/2053-1591/ab0a96 [Google Scholar]
  99. A. Leon, E. Aghion, Mater. Charact., 2017, 131, 188 LINK https://doi.org/10.1016/j.matchar.2017.06.029 [Google Scholar]
  100. Y. F. Zheng, X. N. Gu, F. Witte, Mater. Sci. Eng. R: Rep., 2014, 77, 1 LINK https://doi.org/10.1016/J.MSER.2014.01.001 [Google Scholar]
  101. A. L. Maximenko, E. A. Olevsky, Scr. Mater., 2018, 149, 75 LINK https://doi.org/10.1016/j.scriptamat.2018.02.015 [Google Scholar]
  102. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, C. R. Hutchinson, J. Electrochem C. Soc, 2017, 164, (6), C 250 LINK https://doi.org/10.1149/2.0551706jes [Google Scholar]
  103. R. F. Schaller, J. M. Taylor, J. Rodelas, E. J. Schindelholz, Corrosion, 2017, 73, (7), 796 LINK https://doi.org/10.5006/2365 [Google Scholar]
  104. H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang, L. Shen, J. Mater. Sci. Technol., 2019, 35, (7), 1284 LINK https://doi.org/10.1016/j.jmst.2019.01.012 [Google Scholar]
  105. Q. Ran, W. Yang, Y. Hu, X. Shen, Y. Yu, Y. Xiang, K. Cai, J. Mech. Behav. Biomed. Mater., 2018, 84, 1 LINK https://doi.org/10.1016/j.jmbbm.2018.04.010 [Google Scholar]
  106. R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A. A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Acta Biomater., 2015, 14, 217 LINK https://doi.org/10.1016/j.actbio.2014.12.003 [Google Scholar]
  107. A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, Materials, 2018, 11, (12), 2343 LINK https://doi.org/10.3390/ma11122343 [Google Scholar]
  108. V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P. D. Hodgson, S. Thomas, Corros. Sci., 2020, 164, 108314 LINK https://doi.org/10.1016/j.corsci.2019.108314 [Google Scholar]
  109. S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Sci. Technol. Adv. Mater., 2017, 18, (1), 584 LINK https://doi.org/10.1080/14686996.2017.1361305 [Google Scholar]
  110. M. F. Ashby, Philos. Trans. R. Soc. A, 2006, 364, (1838), 15 LINK https://doi.org/10.1098/rsta.2005.1678 [Google Scholar]
  111. N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Mater. Sci. Eng.: C, 2016, 59, 690 LINK https://doi.org/10.1016/j.msec.2015.10.069 [Google Scholar]
  112. B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Biomaterials, 2006, 27, (35), 5892 LINK https://doi.org/10.1016/j.biomaterials.2006.08.013 [Google Scholar]
  113. S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth, J. Schrooten, Acta Biomater., 2012, 8, (7), 2824 LINK https://doi.org/10.1016/j.actbio.2012.04.001 [Google Scholar]
  114. S. Haeri, Y. Wang, O. Ghita, J. Sun, Powder Technol., 2017, 306, 45 LINK https://doi.org/10.1016/j.powtec.2016.11.002 [Google Scholar]
  115. C. Barile, C. Casavola, S. L. Campanelli, G. Renna, Eng. Fail. Anal., 2019, 95, 273 LINK https://doi.org/10.1016/j.engfailanal.2018.09.032 [Google Scholar]
  116. D. C. Hansen, Electrochem. Soc. Interface, 2008, 17, (2), 31 LINK https://doi.org/10.1149/2.F04082IF [Google Scholar]
  117. T. Kraus, S. F. Fischerauer, A. C. Hänzi, P. J. Uggowitzer, J. F. Löffler, A. M. Weinberg, Acta Biomater., 2012, 8, (3), 1230 LINK https://doi.org/10.1016/j.actbio.2011.11.008 [Google Scholar]
  118. K. Moghadasi, M. S. Mohd Isa, M. A. Ariffin, M. Z. Mohd jamil, S. Raja, B. Wu, M. Yamani, M. R. Bin Muhamad, F. Yusof, M. F. Jamaludin, M. S. bin Ab Karim, B. binti Abdul Razak, N. bin Yusoff, J. Mater. Res. Technol., 2022, 17, 1054 LINK https://doi.org/10.1016/j.jmrt.2022.01.050 [Google Scholar]
  119. I. D. Learmonth, C. Young, C. Rorabeck, Lancet, 2007, 370, (9597), 1508 LINK https://doi.org/10.1016/S0140-6736(07)60457-7 [Google Scholar]
  120. S. M. Ahmadi, R. Hedayati, Y. Li, K. Lietaert, N. Tümer, A. Fatemi, C. D. Rans, B. Pouran, H. Weinans, A. A. Zadpoor, Acta Biomater., 2018, 65, 292 LINK https://doi.org/10.1016/j.actbio.2017.11.014 [Google Scholar]
  121. E. Otero, A. Pardo, E. Sáenz, M. V. Utrilla, F. J. Pérez, Can. Metall. Quart., 1997, 36, (1), 65 LINK https://doi.org/10.1179/cmq.1997.36.1.65 [Google Scholar]
  122. Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L. I. Fockaert, M. A. Leeflang, B. Pouran, Y. Gonzalez-Garcia, H. Weinans, J. M. C. Mol, J. Zhou, A. A. Zadpoor, Acta Biomater., 2018, 77, 380 LINK https://doi.org/10.1016/j.actbio.2018.07.011 [Google Scholar]
  123. Y. Li, P. Pavanram, J. Zhou, K. Lietaert, F. S. L. Bobbert, Y. Kubo, M. A. Leeflang, H. Jahr, A. A. Zadpoor, Biomater. Sci., 2020, 8, (9), 2404 LINK https://doi.org/10.1039/c9bm01904a [Google Scholar]
  124. L. Zhou, T. Yuan, J. Tang, J. He, R. Li, Opt. Laser Technol., 2019, 119, 105625 LINK https://doi.org/10.1016/j.optlastec.2019.105625 [Google Scholar]
  125. A. Ataee, Y. Li, M. Brandt, C. Wen, Acta Mater., 2018, 158, 354 LINK https://doi.org/10.1016/j.actamat.2018.08.005 [Google Scholar]
  126. J. N. Oliver, Y. Su, X. Lu, P.-H. Kuo, J. Du, D. Zhu, Bioact. Mater., 2019, 4, 261 LINK https://doi.org/10.1016/j.bioactmat.2019.09.002 [Google Scholar]
  127. S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, A. P. Tomsia, J. Eur. Ceram. Soc., 2003, 23, (15), 2921 LINK https://doi.org/10.1016/S0955-2219(03)00303-0 [Google Scholar]
  128. J. Harrop, ‘3D Printing Materials 2015–2025: Status, Opportunities, Market Forecasts: Pricing, Properties and Projections for Materials Including Photopolymers, Thermoplastics and Metal Powders’, IDTechEx, Cambridge, UK:https://www.idtechex.com/en/research-report/3d-printing-materials-2015-2025-status-opportunities-market-forecasts/416 (Accessed on 20th October 2023) [Google Scholar]
  129. P. Kocovic, ‘History of Additive Manufacturing’, in “3D Printing and Its Impact on the Production of Fully Functional Components: Emerging Research and Opportunities”, ch. 1, IGI Global, Hershey, USA, 2017, pp. 124 LINK https://doi.org/10.4018/978-1-5225-2289-8.ch001 [Google Scholar]
  130. M. Cazzola, S. Ferraris, F. Boschetto, A. Rondinella, E. Marin, W. Zhu, G. Pezzotti, E. Vernè, S. Spriano, Int. J. Mol. Sci., 2018, 19, (8), 2255 LINK https://doi.org/10.3390/ijms19082255 [Google Scholar]
/content/journals/10.1595/205651324X16826780236175
Loading
/content/journals/10.1595/205651324X16826780236175
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test