Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135
  • oa Hydrogen Use in a Dual-Fuel Compression Ignition Engine with Alternative Biofuels

    Recommended hydrogen ratios for NOx reduction, thermal efficiency and stability

  • Authors: José Rodríguez-Fernández1, Ángel Ramos1, Víctor M. Domínguez1, Blanca Giménez2, Miriam Reyes2 and Juan J. Hernández3
  • Affiliations: 1 E.T.S. de Ingeniería Industrial, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain 2 Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain 3 E.T.S. de Ingeniería Industrial, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
    *Email: [email protected]
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 3, Jul 2024, p. 381 - 395
  • DOI: https://doi.org/10.1595/205651324X16963489202714
    • Received: 31 Jul 2023
    • Accepted: 03 Oct 2023
    • Published online: 03 Oct 2023

Abstract

Recent progress has been made towards decarbonisation of transport, which accounts for one quarter of global carbon dioxide emissions. For the short to medium term, new European Union (EU) and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression ignition (CI) engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel (BD) and hydrotreated vegetable oil (HVO)) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher exhaust gas recirculation (EGR) rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of BD dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16963489202714
2023-10-03
2024-12-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Rodriguez_16b_Imp.html?itemId=/content/journals/10.1595/205651324X16963489202714&mimeType=html&fmt=ahah

References

  1. A. D. Korberg, S. Brynolf, M. Grahn, I. R. Skov, Renew. Sustain. Energy Rev., 2021, 142, 110861 LINK https://doi.org/10.1016/j.rser.2021.110861 [Google Scholar]
  2. X. Yu, N. S. Sandhu, Z. Yang, M. Zheng, Appl. Energy, 2020, 271, 115169 LINK https://doi.org/10.1016/j.apenergy.2020.115169 [Google Scholar]
  3. H. Wang, X. Zhao, K. Zhang, W. Wang, Sustain. Prod. Consum., 2022, 33, 903 LINK https://doi.org/10.1016/j.spc.2022.08.010 [Google Scholar]
  4. S. Z. Zhiznin, N. N. Shvets, V. M. Timokhov, A. L. Gusev, Int. J. Hydrogen Energy, 2023, 48, (57), 21544 LINK https://doi.org/10.1016/j.ijhydene.2023.03.069 [Google Scholar]
  5. “The Future of Hydrogen: Seizing Today’s Opportunities”, International Energy Agency, Paris, France, June, 2019, 203 pp LINK https://www.iea.org/reports/the-future-of-hydrogen [Google Scholar]
  6. X. Liu, H. Aljabri, N. Panthi, A. S. AlRamadan, E. Cenker, A. T. Alshammari, G. Magnotti, H. G. Im, Fuel, 2023, 350, 128801 LINK https://doi.org/10.1016/j.fuel.2023.128801 [Google Scholar]
  7. A. Boretti, Int. J. Hydrogen Energy, 2011, 36, (15), 9312 LINK https://doi.org/10.1016/j.ijhydene.2011.05.037 [Google Scholar]
  8. N. Gültekin, M. Ciniviz, Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  9. V. Chintala, K. A. Subramanian, Renew. Sust. Energy Rev., 2017, 70, 472 LINK https://doi.org/10.1016/j.rser.2016.11.247 [Google Scholar]
  10. T. Tsujimura, Y. Suzuki, Int. J. Hydrogen Energy, 2017, 42, (19), 14019 LINK https://doi.org/10.1016/j.ijhydene.2017.01.152 [Google Scholar]
  11. R. N. Bhagat, K. B. Sahu, S. K. Ghadai, C. B. Kumar, Int. J. Hydrogen Energy, 2023, 48, (70), 27394 LINK https://doi.org/10.1016/j.ijhydene.2023.03.251 [Google Scholar]
  12. N. Gültekin, M. Ciniviz, Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  13. G. M. Pinto, T. A. Z. de Souza, R. B. R. da Costa, L. F. A. Roque, G. V. Frez, C. J. R. Coronado, Int. J. Hydrogen Energy, 2023, 48, (51), 19713 LINK https://doi.org/10.1016/j.ijhydene.2023.02.020 [Google Scholar]
  14. J. J. Hernández, A. Cova-Bonillo, A. Ramos, H. Wu, J. Rodríguez-Fernández, Fuel, 2023, 339, 127487 LINK https://doi.org/10.1016/j.fuel.2023.127487 [Google Scholar]
  15. M. Talibi, P. Hellier, N. Ladommatos, Int. J. Hydrogen Energy, 2017, 42, (9), 6369 LINK https://doi.org/10.1016/j.ijhydene.2016.11.207 [Google Scholar]
  16. S. Szwaja, K. Grab-Rogalinski, Int. J. Hydrogen Energy, 2009, 34, (10), 4413 LINK https://doi.org/10.1016/j.ijhydene.2009.03.020 [Google Scholar]
  17. M. Kumar, S. Bhowmik, A. Paul, Int. J. Hydrogen Energy, 2022, 47, (68), 29554 LINK https://doi.org/10.1016/j.ijhydene.2022.06.260 [Google Scholar]
  18. M. Talibi, P. Hellier, N. Ladommatos, Int. J. Hydrogen Energy, 2017, 42, (9), 6369 LINK https://doi.org/10.1016/j.ijhydene.2016.11.207 [Google Scholar]
  19. N. Gültekin, M. Ciniviz, Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  20. V. S. Yaliwal, N. R. Banapurmath, M. E. M. Soudagar, A. Afzal, P. Ahmadi, Int. J. Hydrogen Energy, 2022, 47, (10), 6873 LINK https://doi.org/10.1016/j.ijhydene.2021.12.023 [Google Scholar]
  21. U. Rajak, P. Nashine, T. N. Verma, I. Veza, Ü. Ağbulut, Int. J. Hydrogen Energy, 2022, 47, (76), 32741 LINK https://doi.org/10.1016/j.ijhydene.2022.07.144 [Google Scholar]
  22. P. Dimitriou, T. Tsujimura, Int. J. Hydrogen Energy, 2017, 42, (38), 24470 LINK https://doi.org/10.1016/j.ijhydene.2017.07.232 [Google Scholar]
  23. H. M. Z. Rocha, M. F. M. Nogueira, D. R. da Silva Guerra, J. J. Hernández, L. S. Queiroz, Int. J. Hydrogen Energy, 2021, 46, (71), 35479 LINK https://doi.org/10.1016/j.ijhydene.2021.08.094 [Google Scholar]
  24. V. M. Domínguez, J. J. Hernández, A. Ramos, M. Reyes, J. Rodríguez-Fernández, Fuel, 2023, 333, (1), 126301 LINK https://doi.org/10.1016/j.fuel.2022.126301 [Google Scholar]
  25. J. Rodríguez-Fernández, J. J. Hernández, A. Ramos, J. Barba, V. M. D. Pérez, O. H. Torres, V. Casero-Alonso, L. J. Rodríguez-Aragón, SAE Technical Paper 2022-01-0465, SAE International, Warrendale, USA, 2022, 10 pp LINK https://doi.org/10.4271/2022-01-0465 [Google Scholar]
  26. W. B. Santoso, R. A. Bakar, A. Nur, Energy Proc., 2013, 32, 3 LINK https://doi.org/10.1016/j.egypro.2013.05.002 [Google Scholar]
  27. I. T. Yilmaz, M. Gumus, Energy, 2018, 142, 1104 LINK https://doi.org/10.1016/j.energy.2017.10.018 [Google Scholar]
  28. H. Li, S. Liu, C. Liew, T. Gatts, S. Wayne, N. Clark, J. Nuszkowski, Int. J. Hydrogen Energy, 2017, 42, (5), 3352 LINK https://doi.org/10.1016/j.ijhydene.2016.12.115 [Google Scholar]
  29. A. E. Dhole, R. B. Yarasu, D. B. Lata, Appl. Therm. Eng., 2016, 107, 524 LINK https://doi.org/10.1016/j.applthermaleng.2016.06.151 [Google Scholar]
  30. K. Thiruselvam, S. Murugapoopathi, T. Ramachandran, K. T. T. Amesho, Int. J. Hydrogen Energy, 2023, 48, (79), 30974 LINK https://doi.org/10.1016/j.ijhydene.2023.04.256 [Google Scholar]
  31. V. S. Yaliwal, N. R. Banapurmath, M. E. M. Soudagar, A. Afzal, P. Ahmadi, Int. J. Hydrogen Energy, 2022, 47, (10), 6873 LINK https://doi.org/10.1016/j.ijhydene.2021.12.023 [Google Scholar]
  32. R. A. Bakar, Widudo, K. Kadirgama, D. Ramasamy, T. Yusaf, M. K. Kamarulzaman, Sivaraos, N. Aslfattahi, L. Samylingam, S. H. Alwayzy, Int. J. Hydrogen Energy, 2024, 52, (C), 843 LINK https://doi.org/10.1016/j.ijhydene.2022.04.129 [Google Scholar]
  33. X. Li, B. Sun, D. Zhang, X. Wang, L. Bao, Q. Luo, Energy Conv. Manag.: X, 2022, 15, 100260 LINK https://doi.org/10.1016/j.ecmx.2022.100260 [Google Scholar]
  34. V. Chintala, K. A. Subramanian, Energy, 2015, 87, 448 LINK https://doi.org/10.1016/j.energy.2015.05.014 [Google Scholar]
  35. M. Fan, Z. Li, S. Song, T. A. Alahmadi, S. A. Alharbi, S. Shanmugam, G. K. Jhanani, K. Brindhadevi, Fuel, 2023, 346, 128340 LINK https://doi.org/10.1016/j.fuel.2023.128340 [Google Scholar]
  36. M. S. Kumar, A. Ramesh, B. Nagalingam, Int. J. Hydrogen Energy, 2003, 28, (10), 1143 LINK https://doi.org/10.1016/S0360-3199(02)00234-3 [Google Scholar]
  37. E. Sukjit, J. M. Herreros, K. D. Dearn, A. Tsolakis, K. Theinnoi, Int. J. Hydrogen Energy, 2013, 38, (3), 1624 LINK https://doi.org/10.1016/j.ijhydene.2012.11.061 [Google Scholar]
  38. F. Christodoulou, A. Megaritis, Int. J. Hydrogen Energy, 2013, 38, (24), 10126 LINK https://doi.org/10.1016/j.ijhydene.2013.05.173 [Google Scholar]
/content/journals/10.1595/205651324X16963489202714
Loading
/content/journals/10.1595/205651324X16963489202714
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test