Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Recent progress has been made towards decarbonisation of transport, which accounts for one quarter of global carbon dioxide emissions. For the short to medium term, new European Union (EU) and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression ignition (CI) engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel (BD) and hydrotreated vegetable oil (HVO)) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher exhaust gas recirculation (EGR) rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of BD dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16963489202714
2023-10-03
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Rodriguez_16b_Imp.html?itemId=/content/journals/10.1595/205651324X16963489202714&mimeType=html&fmt=ahah

References

  1. Korberg A. D., Brynolf S., Grahn M., and Skov I. R. Renew. Sustain. Energy Rev., 2021, 142, 110861 LINK https://doi.org/10.1016/j.rser.2021.110861 [Google Scholar]
  2. Yu X., Sandhu N. S., Yang Z., and Zheng M. Appl. Energy, 2020, 271, 115169 LINK https://doi.org/10.1016/j.apenergy.2020.115169 [Google Scholar]
  3. Wang H., Zhao X., Zhang K., and Wang W. Sustain. Prod. Consum., 2022, 33, 903 LINK https://doi.org/10.1016/j.spc.2022.08.010 [Google Scholar]
  4. Zhiznin S. Z., Shvets N. N., Timokhov V. M., and Gusev A. L. Int. J. Hydrogen Energy, 2023, 48, (57), 21544 LINK https://doi.org/10.1016/j.ijhydene.2023.03.069 [Google Scholar]
  5. “The Future of Hydrogen: Seizing Today’s Opportunities”, International Energy Agency, Paris, France, June, 2019, 203 pp LINK https://www.iea.org/reports/the-future-of-hydrogen [Google Scholar]
  6. Liu X., Aljabri H., Panthi N., AlRamadan A. S., Cenker E., Alshammari A. T., Magnotti G., and Im H. G. Fuel, 2023, 350, 128801 LINK https://doi.org/10.1016/j.fuel.2023.128801 [Google Scholar]
  7. Boretti A. Int. J. Hydrogen Energy, 2011, 36, (15), 9312 LINK https://doi.org/10.1016/j.ijhydene.2011.05.037 [Google Scholar]
  8. Gültekin N., and Ciniviz M. Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  9. Chintala V., and Subramanian K. A. Renew. Sust. Energy Rev., 2017, 70, 472 LINK https://doi.org/10.1016/j.rser.2016.11.247 [Google Scholar]
  10. Tsujimura T., and Suzuki Y. Int. J. Hydrogen Energy, 2017, 42, (19), 14019 LINK https://doi.org/10.1016/j.ijhydene.2017.01.152 [Google Scholar]
  11. Bhagat R. N., Sahu K. B., Ghadai S. K., and Kumar C. B. Int. J. Hydrogen Energy, 2023, 48, (70), 27394 LINK https://doi.org/10.1016/j.ijhydene.2023.03.251 [Google Scholar]
  12. Gültekin N., and Ciniviz M. Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  13. Pinto G. M., de Souza T. A. Z., da Costa R. B. R., Roque L. F. A., Frez G. V., and Coronado C. J. R. Int. J. Hydrogen Energy, 2023, 48, (51), 19713 LINK https://doi.org/10.1016/j.ijhydene.2023.02.020 [Google Scholar]
  14. Hernández J. J., Cova-Bonillo A., Ramos A., Wu H., and Rodríguez-Fernández J. Fuel, 2023, 339, 127487 LINK https://doi.org/10.1016/j.fuel.2023.127487 [Google Scholar]
  15. Talibi M., Hellier P., and Ladommatos N. Int. J. Hydrogen Energy, 2017, 42, (9), 6369 LINK https://doi.org/10.1016/j.ijhydene.2016.11.207 [Google Scholar]
  16. Szwaja S., and Grab-Rogalinski K. Int. J. Hydrogen Energy, 2009, 34, (10), 4413 LINK https://doi.org/10.1016/j.ijhydene.2009.03.020 [Google Scholar]
  17. Kumar M., Bhowmik S., and Paul A. Int. J. Hydrogen Energy, 2022, 47, (68), 29554 LINK https://doi.org/10.1016/j.ijhydene.2022.06.260 [Google Scholar]
  18. Talibi M., Hellier P., and Ladommatos N. Int. J. Hydrogen Energy, 2017, 42, (9), 6369 LINK https://doi.org/10.1016/j.ijhydene.2016.11.207 [Google Scholar]
  19. Gültekin N., and Ciniviz M. Int. J. Hydrogen Energy, 2023, 48, (7), 2801 LINK https://doi.org/10.1016/j.ijhydene.2022.10.155 [Google Scholar]
  20. Yaliwal V. S., Banapurmath N. R., Soudagar M. E. M., Afzal A., and Ahmadi P. Int. J. Hydrogen Energy, 2022, 47, (10), 6873 LINK https://doi.org/10.1016/j.ijhydene.2021.12.023 [Google Scholar]
  21. Rajak U., Nashine P., Verma T. N., Veza I., and Ağbulut Ü. Int. J. Hydrogen Energy, 2022, 47, (76), 32741 LINK https://doi.org/10.1016/j.ijhydene.2022.07.144 [Google Scholar]
  22. Dimitriou P., and Tsujimura T. Int. J. Hydrogen Energy, 2017, 42, (38), 24470 LINK https://doi.org/10.1016/j.ijhydene.2017.07.232 [Google Scholar]
  23. Rocha H. M. Z., Nogueira M. F. M., da Silva Guerra D. R., Hernández J. J., and Queiroz L. S. Int. J. Hydrogen Energy, 2021, 46, (71), 35479 LINK https://doi.org/10.1016/j.ijhydene.2021.08.094 [Google Scholar]
  24. Domínguez V. M., Hernández J. J., Ramos A., Reyes M., and Rodríguez-Fernández J. Fuel, 2023, 333, (1), 126301 LINK https://doi.org/10.1016/j.fuel.2022.126301 [Google Scholar]
  25. Rodríguez-Fernández J., Hernández J. J., Ramos A., Barba J., Pérez V. M. D., Torres O. H., Casero-Alonso V., and Rodríguez-Aragón L. J. SAE Technical Paper 2022-01-0465, SAE International, Warrendale, USA, 2022, 10 pp LINK https://doi.org/10.4271/2022-01-0465 [Google Scholar]
  26. Santoso W. B., Bakar R. A., and Nur A. Energy Proc., 2013, 32, 3 LINK https://doi.org/10.1016/j.egypro.2013.05.002 [Google Scholar]
  27. Yilmaz I. T., and Gumus M. Energy, 2018, 142, 1104 LINK https://doi.org/10.1016/j.energy.2017.10.018 [Google Scholar]
  28. Li H., Liu S., Liew C., Gatts T., Wayne S., Clark N., and Nuszkowski J. Int. J. Hydrogen Energy, 2017, 42, (5), 3352 LINK https://doi.org/10.1016/j.ijhydene.2016.12.115 [Google Scholar]
  29. Dhole A. E., Yarasu R. B., and Lata D. B. Appl. Therm. Eng., 2016, 107, 524 LINK https://doi.org/10.1016/j.applthermaleng.2016.06.151 [Google Scholar]
  30. Thiruselvam K., Murugapoopathi S., Ramachandran T., and Amesho K. T. T. Int. J. Hydrogen Energy, 2023, 48, (79), 30974 LINK https://doi.org/10.1016/j.ijhydene.2023.04.256 [Google Scholar]
  31. Yaliwal V. S., Banapurmath N. R., Soudagar M. E. M., Afzal A., and Ahmadi P. Int. J. Hydrogen Energy, 2022, 47, (10), 6873 LINK https://doi.org/10.1016/j.ijhydene.2021.12.023 [Google Scholar]
  32. Bakar R. A., Widudo, Kadirgama K., Ramasamy D., Yusaf T., Kamarulzaman M. K., Sivaraos, Aslfattahi N., Samylingam L., and Alwayzy S. H. Int. J. Hydrogen Energy, 2024, 52, (C), 843 LINK https://doi.org/10.1016/j.ijhydene.2022.04.129 [Google Scholar]
  33. Li X., Sun B., Zhang D., Wang X., Bao L., and Luo Q. Energy Conv. Manag.: X, 2022, 15, 100260 LINK https://doi.org/10.1016/j.ecmx.2022.100260 [Google Scholar]
  34. Chintala V., and Subramanian K. A. Energy, 2015, 87, 448 LINK https://doi.org/10.1016/j.energy.2015.05.014 [Google Scholar]
  35. Fan M., Li Z., Song S., Alahmadi T. A., Alharbi S. A., Shanmugam S., Jhanani G. K., and Brindhadevi K. Fuel, 2023, 346, 128340 LINK https://doi.org/10.1016/j.fuel.2023.128340 [Google Scholar]
  36. Kumar M. S., Ramesh A., and Nagalingam B. Int. J. Hydrogen Energy, 2003, 28, (10), 1143 LINK https://doi.org/10.1016/S0360-3199(02)00234-3 [Google Scholar]
  37. Sukjit E., Herreros J. M., Dearn K. D., Tsolakis A., and Theinnoi K. Int. J. Hydrogen Energy, 2013, 38, (3), 1624 LINK https://doi.org/10.1016/j.ijhydene.2012.11.061 [Google Scholar]
  38. Christodoulou F., and Megaritis A. Int. J. Hydrogen Energy, 2013, 38, (24), 10126 LINK https://doi.org/10.1016/j.ijhydene.2013.05.173 [Google Scholar]
/content/journals/10.1595/205651324X16963489202714
Loading
/content/journals/10.1595/205651324X16963489202714
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error