Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Ammonia is emerging as a promising alternative fuel for longer range decarbonised heavy transport, particularly in the marine sector due to highly favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine equipped with gasoline direct injection was upgraded to include gaseous ammonia port injection fuelling, with the aim of understanding maximum viable ammonia substitution ratios across the speed load operating map. The work was conducted under overall stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions (including ammonia ‘slip’). With a geometric compression ratio of 12.4:1, it was possible to run the engine on pure ammonia at low engine speeds (1000–1800 rpm) at low to moderate engine loads in a fully warmed up state. When progressively dropping down below a threshold load limit, an increasing amount of gasoline co-firing was required to avoid engine misfire. Due to the favourable antiknock characteristics, pure ammonia operation was up to 5% more efficient than pure gasoline operation under stable operating regions. A maximum net indicated thermal efficiency (ITE) of 40% was achieved, with efficiency tending to increase with speed and load. For the co-fuelling of gasoline and ammonia in a pure ammonia attainable operating region, it was found that addition of gasoline improved the combustion, but these improvements were not sufficient to translate into improved thermal efficiency. Emissions of ammonia slip reduced with increased gasoline co-fuelling, albeit with increased NOx. However, the reduction in ammonia slip was nearly ten times the increase in NOx emissions. Comparing pure ammonia and pure gasoline operation, NOx reduced by ~60% when switching from pure gasoline to pure ammonia (as the latter is associated with longer and cooler combustion). Results were finally compared to those obtained a modern multicylinder Volvo ‘D8’ turbo-diesel engine modified for dual-fuel operation with ammonia port fuel injection (PFI), with the focus of the comparison being ammonia slip and NOx emissions.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17005622661871
2023-11-21
2024-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Cairns_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17005622661871&mimeType=html&fmt=ahah

References

  1. G. Castellanos, R. Roesch, A. Sloan, “A Pathway to Decarbonise the Shipping Sector by 2050”, International Renewable Energy Agency (IRENA), Abu Dhabi, United Arab Emirates, 2021, 118 pp LINK https://www.irena.org/Publications/2021/Oct/A-Pathway-to-Decarbonise-the-Shipping-Sector-by-2050 [Google Scholar]
  2. ‘Roadmap 2020: Thermal Propulsion Systems: Technology Indicators and Drivers’, Advanced Propulsion Centre, London, UK, 2020, 2 pp LINK https://www.apcuk.co.uk/wp-content/uploads/2021/09/https___www.apcuk_.co_.uk_app_uploads_2020_11_Technology-Roadmap-Thermal-Propulsion-Systems.pdf [Google Scholar]
  3. M. Guteša Božo, M. O. Vigueras-Zuniga, M. Buffi, T. Seljak, A. Valera-Medina, Appl. Energy, 2019, 251, 113334 LINK https://doi.org/10.1016/j.apenergy.2019.113334 [Google Scholar]
  4. A. Valera-Medina, M. Gutesa, H. Xiao, D. Pugh, A. Giles, B. Goktepe, R. Marsh, P. Bowen, Int. J. Hydrogen Energy, 2019, 44, (16), 8615 LINK https://doi.org/10.1016/j.ijhydene.2019.02.041 [Google Scholar]
  5. D. Pugh, A. Valera-Medina, P. Bowen, A. Giles, B. Goktepe, J. Runyon, S. Morris, S. Hewlett, R. Marsh, ‘Emissions Performance of Staged Premixed and Diffusion Combustor Concepts for an NH3/Air Flame With and Without Reactant Humidification’, Online, 21st–25th September, 2020, “Conference Proceedings: Turbo Expo: Power for Land, Sea, and Air”, Vol. 4A: Combustion, Fuels, and Emissions, Paper No. V04AT04A050, American Society of Mechanical Engineers, New York, USA, 2021 LINK https://doi.org/10.1115/GT2020-14953 [Google Scholar]
  6. A. Valera-Medina, D. G. Pugh, P. Marsh, G. Bulat, P. Bowen, Int. J. Hydrogen Energy, 2017, 42, (38), 24495 LINK https://doi.org/10.1016/j.ijhydene.2017.08.028 [Google Scholar]
  7. F. J. Verkamp, M. C. Hardin, J. R. Williams, Symp. (Int.) Combust., 1967, 11, (1), 985 LINK https://doi.org/10.1016/s0082-0784(67)80225-x [Google Scholar]
  8. E. Krock, J. Inst. Petrol., 1945, 31, 213 [Google Scholar]
  9. J. T. Gray, E. Dimitroff, N. T. Meckel, R. D. Quillian, SAE Trans., 1967, 75, (1), 785 LINK https://doi.org/10.4271/660156 [Google Scholar]
  10. K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong, Appl. Energy, 2014, 113, 488 LINK https://doi.org/10.1016/j.apenergy.2013.07.065 [Google Scholar]
  11. C. W. Gross, S.-C. Kong, Fuel, 2013, 103, 1069 LINK https://doi.org/10.1016/j.fuel.2012.08.026 [Google Scholar]
  12. S. S. Gill, G. S. Chatha, A. Tsolakis, S. E. Golunski, A. P. E. York, Int. J. Hydrogen Energy, 2012, 37, (7), 6074 LINK https://doi.org/10.1016/j.ijhydene.2011.12.137 [Google Scholar]
  13. A. J. Reiter, C. Kong, Fuel, 2011, 90, (1), 87 LINK https://doi.org/10.1016/j.fuel.2010.07.055 [Google Scholar]
  14. A. J. Reiter, S.-C. Kong, Energy Fuels, 2008, 22, (5), 2963 LINK https://doi.org/10.1021/ef800140f [Google Scholar]
  15. T. J. Pearsall, C. G. Garabedian, SAE Trans., 1968, 76, (4), 3213 LINK https://doi.org/10.4271/670947 [Google Scholar]
  16. M. Pochet, V. Dias, H. Jeanmart, S. Verhelst, F. Contino, Energy Proc., 2017, 105, 1532 LINK https://doi.org/10.1016/j.egypro.2017.03.468 [Google Scholar]
  17. K. L. Tay, W. Yang, J. Li, D. Zhou, W. Yu, F. Zhao, S. K. Chou, B. Mohan, Appl. Energy, 2017, 204, 1476 LINK https://doi.org/10.1016/j.apenergy.2017.03.100 [Google Scholar]
  18. Z. Zhang, W. Long, P. Dong, H. Tian, J. Tian, B. Li, Y. Wang, Fuel, 2023, 332, (2), 126086 LINK https://doi.org/10.1016/j.fuel.2022.126086 [Google Scholar]
  19. D. Lee, H. H. Song, J. Mech. Sci. Technol., 2018, 32, (4), 1905 LINK https://doi.org/10.1007/s12206-018-0347-x [Google Scholar]
  20. E. S. Starkman, H. K. Newhall, R. Sutton, T. Maguire, L. Farbar, SAE Trans., 1967, 75, (1), 765 LINK https://doi.org/10.4271/660155 [Google Scholar]
  21. C. S. Mørch, A. Bjerre, M. P. Gøttrup, S. C. Sorenson, J. Schramm, Fuel, 2011, 90, (2), 854 LINK https://doi.org/10.1016/j.fuel.2010.09.042 [Google Scholar]
  22. S. Frigo, R. Gentili, Int. J. Hydrogen Energy, 2013, 38, (3), 1607 LINK https://doi.org/10.1016/j.ijhydene.2012.10.114 [Google Scholar]
  23. S. Frigo, R. Gentili, F. De Angelis, SAE Technical Paper 2014-32-0082, SAE International, Warrendale, USA, 2014, 9 pp LINK https://doi.org/10.4271/2014-32-0082 [Google Scholar]
  24. C. Lhuillier, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, Fuel, 2020, 269, 117448 LINK https://doi.org/10.1016/j.fuel.2020.117448 [Google Scholar]
  25. C. Mounaïm-Rousselle, A. Mercier, P. Brequigny, C. Dumand, J. Bouriot, S. Houillé, Int. J. Eng. Res., 2021, 23, (5), 781 LINK https://doi.org/10.1177/14680874211038726 [Google Scholar]
  26. J. R. Grove, ‘The Measurement of Quenching Diameters and Their Relation to the Flameproof Grouping of Gases and Vapours’, Safety and Loss Prevention: Hazards 3 Conference, 11th–12th April, 1967, IChemE Symposium Series No. 25, Institution of Chemical Engineers, Rugby, UK, 1967, pp. 5154 LINK https://www.icheme.org/media/10305/iii-paper-07.pdf [Google Scholar]
  27. P. Dimitriou, R. Javaid, Int. J. Hydrogen Energy, 2020, 45, (11), 7098 LINK https://doi.org/10.1016/j.ijhydene.2019.12.209 [Google Scholar]
  28. C. Lhuillier, P. Brequigny, F. Contino, C. Rousselle, SAE Technical Paper 2019-24-0237, SAE International, Warrendale, USA, 2019, 13 pp LINK https://doi.org/10.4271/2019-24-0237 [Google Scholar]
  29. A. Kumamoto, H. Iseki, R. Ono, T. Oda, J. Phys.: Conf. Ser., 2011, 301, 012039 LINK https://doi.org/10.1088/1742-6596/301/1/012039 [Google Scholar]
  30. İ. A. Özkan, M. Ciniviz, F. Candan, Int. J. Auto. Eng., Technol., 2015, 4, (1), 63 LINK https://dergipark.org.tr/en/pub/ijaet/issue/7971/104617 [Google Scholar]
  31. S. M. Grannell, D. N. Assanis, S. V. Bohac, D. E. Gillespie, J. Eng. Gas Turbines Power, 2008, 130, (4), 042802 LINK https://doi.org/10.1115/1.2898837 [Google Scholar]
  32. K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong, Appl. Energy, 2014, 116, 206 LINK https://doi.org/10.1016/j.apenergy.2013.11.067 [Google Scholar]
  33. K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong, Int. J. Hydrogen Energy, 2014, 39, (5), 2390 LINK https://doi.org/10.1016/j.ijhydene.2013.11.098 [Google Scholar]
  34. S. O. Haputhanthri, C. Austin, T. Maxwell, J. Fleming, IOSR J. Mech. Civil Eng., 2014, 11, (2), 11 LINK https://www.iosrjournals.org/iosr-jmce/papers/vol11-issue2/Version-4/B011241118.pdf [Google Scholar]
  35. H. Kobayashi, A. Hayakawa, D. K. A. Somarathne, E. C. Okafor, Proc. Combust. Inst., 2019, 37, (1), 109 LINK https://doi.org/10.1016/j.proci.2018.09.029 [Google Scholar]
  36. C. Mounaïm-Rousselle, P. Bréquigny, C. Dumand, S. Houillé, Energies, 2021, 14, (14), 4141 LINK https://doi.org/10.3390/en14144141 [Google Scholar]
  37. J. Girard, R. Snow, G. Cavataio, C. Lambert, SAE Technical Paper 2007-01-1581, SAE International, Warrendale, USA, 2007, 9 pp LINK https://doi.org/10.4271/2007-01-1581 [Google Scholar]
  38. A. Mercier, C. Mounaïm-Rousselle, P. Brequigny, J. Bouriot, C. Dumand, Fuel Commun., 2022, 11, 100058 LINK https://doi.org/10.1016/j.jfueco.2022.100058 [Google Scholar]
/content/journals/10.1595/205651324X17005622661871
Loading
/content/journals/10.1595/205651324X17005622661871
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test