Skip to content
Volume 68, Issue 3
  • ISSN: 2056-5135


Ammonia is emerging as a promising alternative fuel for longer range decarbonised heavy transport, particularly in the marine sector due to highly favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine equipped with gasoline direct injection was upgraded to include gaseous ammonia port injection fuelling, with the aim of understanding maximum viable ammonia substitution ratios across the speed load operating map. The work was conducted under overall stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions (including ammonia ‘slip’). With a geometric compression ratio of 12.4:1, it was possible to run the engine on pure ammonia at low engine speeds (1000–1800 rpm) at low to moderate engine loads in a fully warmed up state. When progressively dropping down below a threshold load limit, an increasing amount of gasoline co-firing was required to avoid engine misfire. Due to the favourable antiknock characteristics, pure ammonia operation was up to 5% more efficient than pure gasoline operation under stable operating regions. A maximum net indicated thermal efficiency (ITE) of 40% was achieved, with efficiency tending to increase with speed and load. For the co-fuelling of gasoline and ammonia in a pure ammonia attainable operating region, it was found that addition of gasoline improved the combustion, but these improvements were not sufficient to translate into improved thermal efficiency. Emissions of ammonia slip reduced with increased gasoline co-fuelling, albeit with increased NOx. However, the reduction in ammonia slip was nearly ten times the increase in NOx emissions. Comparing pure ammonia and pure gasoline operation, NOx reduced by ~60% when switching from pure gasoline to pure ammonia (as the latter is associated with longer and cooler combustion). Results were finally compared to those obtained a modern multicylinder Volvo ‘D8’ turbo-diesel engine modified for dual-fuel operation with ammonia port fuel injection (PFI), with the focus of the comparison being ammonia slip and NOx emissions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Castellanos G., Roesch R., and Sloan A. “A Pathway to Decarbonise the Shipping Sector by 2050”, International Renewable Energy Agency (IRENA), Abu Dhabi, United Arab Emirates, 2021, 118 pp LINK [Google Scholar]
  2. ‘Roadmap 2020: Thermal Propulsion Systems: Technology Indicators and Drivers’, Advanced Propulsion Centre, London, UK, 2020, 2 pp LINK [Google Scholar]
  3. Guteša Božo M., Vigueras-Zuniga M. O., Buffi M., Seljak T., and Valera-Medina A. Appl. Energy, 2019, 251, 113334 LINK [Google Scholar]
  4. Valera-Medina A., Gutesa M., Xiao H., Pugh D., Giles A., Goktepe B., Marsh R., and Bowen P. Int. J. Hydrogen Energy, 2019, 44, (16), 8615 LINK [Google Scholar]
  5. Pugh D., Valera-Medina A., Bowen P., Giles A., Goktepe B., Runyon J., Morris S., Hewlett S., and Marsh R. ‘Emissions Performance of Staged Premixed and Diffusion Combustor Concepts for an NH3/Air Flame With and Without Reactant Humidification’, Online, 21st–25th September, 2020, “Conference Proceedings: Turbo Expo: Power for Land, Sea, and Air”, Vol. 4A: Combustion, Fuels, and Emissions, Paper No. V04AT04A050, American Society of Mechanical Engineers, New York, USA, 2021 LINK [Google Scholar]
  6. Valera-Medina A., Pugh D. G., Marsh P., Bulat G., and Bowen P. Int. J. Hydrogen Energy, 2017, 42, (38), 24495 LINK [Google Scholar]
  7. Verkamp F. J., Hardin M. C., and Williams J. R. Symp. (Int.) Combust., 1967, 11, (1), 985 LINK [Google Scholar]
  8. Krock E. J. Inst. Petrol., 1945, 31, 213 [Google Scholar]
  9. Gray J. T., Dimitroff E., Meckel N. T., and Quillian R. D. SAE Trans., 1967, 75, (1), 785 LINK [Google Scholar]
  10. Ryu K., Zacharakis-Jutz G. E., and Kong S.-C. Appl. Energy, 2014, 113, 488 LINK [Google Scholar]
  11. Gross C. W., and Kong S.-C. Fuel, 2013, 103, 1069 LINK [Google Scholar]
  12. Gill S. S., Chatha G. S., Tsolakis A., Golunski S. E., and York A. P. E. Int. J. Hydrogen Energy, 2012, 37, (7), 6074 LINK [Google Scholar]
  13. Reiter A. J., and Kong C. Fuel, 2011, 90, (1), 87 LINK [Google Scholar]
  14. Reiter A. J., and Kong S.-C. Energy Fuels, 2008, 22, (5), 2963 LINK [Google Scholar]
  15. Pearsall T. J., and Garabedian C. G. SAE Trans., 1968, 76, (4), 3213 LINK [Google Scholar]
  16. Pochet M., Dias V., Jeanmart H., Verhelst S., and Contino F. Energy Proc., 2017, 105, 1532 LINK [Google Scholar]
  17. Tay K. L., Yang W., Li J., Zhou D., Yu W., Zhao F., Chou S. K., and Mohan B. Appl. Energy, 2017, 204, 1476 LINK [Google Scholar]
  18. Zhang Z., Long W., Dong P., Tian H., Tian J., Li B., and Wang Y. Fuel, 2023, 332, (2), 126086 LINK [Google Scholar]
  19. Lee D., and Song H. H. J. Mech. Sci. Technol., 2018, 32, (4), 1905 LINK [Google Scholar]
  20. Starkman E. S., Newhall H. K., Sutton R., Maguire T., and Farbar L. SAE Trans., 1967, 75, (1), 765 LINK [Google Scholar]
  21. Mørch C. S., Bjerre A., Gøttrup M. P., Sorenson S. C., and Schramm J. Fuel, 2011, 90, (2), 854 LINK [Google Scholar]
  22. Frigo S., and Gentili R. Int. J. Hydrogen Energy, 2013, 38, (3), 1607 LINK [Google Scholar]
  23. Frigo S., Gentili R., and De Angelis F. SAE Technical Paper 2014-32-0082, SAE International, Warrendale, USA, 2014, 9 pp LINK [Google Scholar]
  24. Lhuillier C., Brequigny P., Contino F., and Mounaïm-Rousselle C. Fuel, 2020, 269, 117448 LINK [Google Scholar]
  25. Mounaïm-Rousselle C., Mercier A., Brequigny P., Dumand C., Bouriot J., and Houillé S. Int. J. Eng. Res., 2021, 23, (5), 781 LINK [Google Scholar]
  26. Grove J. R. ‘The Measurement of Quenching Diameters and Their Relation to the Flameproof Grouping of Gases and Vapours’, Safety and Loss Prevention: Hazards 3 Conference, 11th–12th April, 1967, IChemE Symposium Series No. 25, Institution of Chemical Engineers, Rugby, UK, 1967, pp. 5154 LINK [Google Scholar]
  27. Dimitriou P., and Javaid R. Int. J. Hydrogen Energy, 2020, 45, (11), 7098 LINK [Google Scholar]
  28. Lhuillier C., Brequigny P., Contino F., and Rousselle C. SAE Technical Paper 2019-24-0237, SAE International, Warrendale, USA, 2019, 13 pp LINK [Google Scholar]
  29. Kumamoto A., Iseki H., Ono R., and Oda T. J. Phys.: Conf. Ser., 2011, 301, 012039 LINK [Google Scholar]
  30. Özkan İ. A., Ciniviz M., and Candan F. Int. J. Auto. Eng., Technol., 2015, 4, (1), 63 LINK [Google Scholar]
  31. Grannell S. M., Assanis D. N., Bohac S. V., and Gillespie D. E. J. Eng. Gas Turbines Power, 2008, 130, (4), 042802 LINK [Google Scholar]
  32. Ryu K., Zacharakis-Jutz G. E., and Kong S.-C. Appl. Energy, 2014, 116, 206 LINK [Google Scholar]
  33. Ryu K., Zacharakis-Jutz G. E., and Kong S.-C. Int. J. Hydrogen Energy, 2014, 39, (5), 2390 LINK [Google Scholar]
  34. Haputhanthri S. O., Austin C., Maxwell T., and Fleming J. IOSR J. Mech. Civil Eng., 2014, 11, (2), 11 LINK [Google Scholar]
  35. Kobayashi H., Hayakawa A., Somarathne D. K. A., and Okafor E. C. Proc. Combust. Inst., 2019, 37, (1), 109 LINK [Google Scholar]
  36. Mounaïm-Rousselle C., Bréquigny P., Dumand C., and Houillé S. Energies, 2021, 14, (14), 4141 LINK [Google Scholar]
  37. Girard J., Snow R., Cavataio G., and Lambert C. SAE Technical Paper 2007-01-1581, SAE International, Warrendale, USA, 2007, 9 pp LINK [Google Scholar]
  38. Mercier A., Mounaïm-Rousselle C., Brequigny P., Bouriot J., and Dumand C. Fuel Commun., 2022, 11, 100058 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error