Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Over the past few years, there has been a notable surge in research interest surrounding high entropy alloys (HEAs) owing to their exceptional properties. Unlike conventional alloys, HEAs consist of five or more principal elements, which offer endless possibilities for developing new alloy systems. HEAs exhibit a high concentration of mixing elements, resulting in high disorderliness of the atomic structure within the material, known as high entropy. This unique nature provides HEAs with desirable properties, including excellent mechanical and physical properties at elevated temperatures, making them ideal for high-temperature applications like cryogenic engines and gas turbines. Moreover, HEAs have shown remarkable corrosion resistance, positioning them as viable options for applications in demanding environments such as marine settings, oil and gas pipelines and chemical processing plants. This comprehensive review paper analyses recent studies on various HEAs. Part I introduces HEAs and describes their synthesis, microstructure, hardness and strength properties.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Conflicts of Interests: The authors reported no potential conflict of interest.
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17028969538851
2024-10-01
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Radhika_16b_Imp_Pt1.html?itemId=/content/journals/10.1595/205651324X17028969538851&mimeType=html&fmt=ahah

References

  1. J.-W. Yeh, , S.-K. Chen, , S.-J. Lin, , J.-Y. Gan, , T.-S. Chin, , T.-T. Shun, , C.-H. Tsau, , S.-Y. Chang, , Adv. Eng. Mater., 2004, 6, (5), 299 LINK https://doi.org/10.1002/adem.200300567
    [Google Scholar]
  2. J.-W. Yeh, , Ann. Chim. Sci. Mater., 2006, 31, (6), 633 LINK https://doi.org/10.3166/acsm.31.633-648
    [Google Scholar]
  3. M.-H. Tsai, , J.-W. Yeh, , Mater. Res. Lett., 2014, 2, (3), 107 LINK https://doi.org/10.1080/21663831.2014.912690
    [Google Scholar]
  4. B. Cantor, , I. T. H. Chang, , P. Knight, , A. J. B. Vincent, , Mater. Sci. Eng.: A, 2004, 375–377, 213 LINK https://doi.org/10.1016/j.msea.2003.10.257
    [Google Scholar]
  5. T. K. Chen, , T. T. Shun, , J. W. Yeh, , M. S. Wong, , Surf. Coatings Technol., 2004, 188–189, 193 LINK https://doi.org/10.1016/j.surfcoat.2004.08.023
    [Google Scholar]
  6. C.-Y. Hsu, , J.-W. Yeh, , S.-K. Chen, , T.-T. Shun, , Metall. Mater. Trans. A, 2004, 35, (5), 1465 LINK https://doi.org/10.1007/s11661-004-0254-x
    [Google Scholar]
  7. J.-W. Yeh, , S.-J. Lin, , T.-S. Chin, , J.-Y. Gan, , S.-K. Chen, , T.-T. Shun, , C.-H. Tsau, , S.-Y. Chou, , Metall. Mater. Trans. A, 2004, 35, (8), 2533 LINK https://doi.org/10.1007/s11661-006-0234-4
    [Google Scholar]
  8. P.-K. Huang, , J.-W. Yeh, , T.-T. Shun, , S.-K. Chen, , Adv. Eng. Mater., 2004, 6, (1–2), 74 LINK https://doi.org/10.1002/adem.200300507
    [Google Scholar]
  9. Y.-J. Hsu, , W.-C. Chiang, , J.-K. Wu, , Mater. Chem. Phys., 2005, 92, (1), 112 LINK https://doi.org/10.1016/j.matchemphys.2005.01.001
    [Google Scholar]
  10. M.-R. Chen, , S.-J. Lin, , J.-W. Yeh, , S.-K. Chen, , Y.-S. Huang, , C.-P. Tu, , Mater. Trans., 2006, 47, (5), 1395 LINK https://doi.org/10.2320/matertrans.47.1395
    [Google Scholar]
  11. C.-J. Tong, , M.-R. Chen, , J.-W. Yeh, , S.-J. Lin, , S.-K. Chen, , T.-T. Shun, , S.-Y. Chang, , Metall. Mater. Trans. A, 2005, 36, (5), 1263 LINK https://doi.org/10.1007/s11661-005-0218-9
    [Google Scholar]
  12. C.-J. Tong, , Y.-L. Chen, , J.-W. Yeh, , S.-J. Lin, , S.-K. Chen, , T.-T. Shun, , C.-H. Tsau, , S.-Y. Chang, , Metall. Mater. Trans. A, 2005, 36, (4), 881 LINK https://doi.org/10.1007/s11661-005-0283-0
    [Google Scholar]
  13. Y. J. Zhou, , Y. Zhang, , Y. L. Wang, , G. L. Chen, , Appl. Phys. Lett., 2007, 90, (18), 181904 LINK https://doi.org/10.1063/1.2734517
    [Google Scholar]
  14. D. B. Miracle, , J. D. Miller, , O. N. Senkov, , C. Woodward, , M. D. Uchic, , J. Tiley, , Entropy, 2014, 16, (1), 494 LINK https://doi.org/10.3390/e16010494
    [Google Scholar]
  15. M. Calvo-Dahlborg, , S. G. R. Brown, , J. Alloys Compd., 2017, 724, 353 LINK https://doi.org/10.1016/j.jallcom.2017.07.074
    [Google Scholar]
  16. S. A. Kube, , S. Sohn, , D. Uhl, , A. Datye, , A. Mehta, , J. Schroers, , Acta Mater., 2019, 166, 677 LINK https://doi.org/10.1016/j.actamat.2019.01.023
    [Google Scholar]
  17. Y. F. Ye, , C. T. Liu, , Y. Yang, , Acta Mater., 2015, 94, 152 LINK https://doi.org/10.1016/j.actamat.2015.04.051
    [Google Scholar]
  18. D. J. M. King, , S. C. Middleburgh, , A. G. McGregor, , M. B. Cortie, , Acta Mater., 2016, 104, 172 LINK https://doi.org/10.1016/j.actamat.2015.11.040
    [Google Scholar]
  19. Y. Dong, , Y. Lu, , L. Jiang, , T. Wang, , T. Li, , Intermetallics, 2014, 52, 105 LINK https://doi.org/10.1016/j.intermet.2014.04.001
    [Google Scholar]
  20. Z. Wang, , Y. Huang, , Y. Yang, , J. Wang, , C. T. Liu, , Scr. Mater., 2015, 94, 28 LINK https://doi.org/10.1016/j.scriptamat.2014.09.010
    [Google Scholar]
  21. A. Takeuchi, , Mater. Trans., 2020, 61, (9), 1717 LINK https://doi.org/10.2320/matertrans.mt-m2020141
    [Google Scholar]
  22. S. Zhang, , C. L. Wu, , C. H. Zhang, , Mater. Lett., 2015, 141, 7 LINK https://doi.org/10.1016/j.matlet.2014.11.017
    [Google Scholar]
  23. M. C. Troparevsky, , J. R. Morris, , P. R. C. Kent, , A. R. Lupini, , G. M. Stocks, , Phys. Rev. X, 2015, 5, (1), 011041 LINK https://doi.org/10.1103/physrevx.5.011041
    [Google Scholar]
  24. H.-W. Luan, , Y. Shao, , J.-F. Li, , W.-L. Mao, , Z.-D. Han, , C. Shao, , K.-F. Yao, , Scr. Mater., 2020, 179, 40 LINK https://doi.org/10.1016/j.scriptamat.2019.12.041
    [Google Scholar]
  25. S. Guo, , Q. Hu, , C. Ng, , C. T. Liu, , Intermetallics, 2013, 41, 96 LINK https://doi.org/10.1016/j.intermet.2013.05.002
    [Google Scholar]
  26. K. G. Thirugnanasambantham, , A. Singh, , P. Jegannathan, , A. Barathwaj, , P. Vignesh, , S. Vinayak, , S. V. Vikram, , M. V. Cheepurupalli, , Int. J. Interact. Des. Manuf., 2023 LINK https://doi.org/10.1007/s12008-023-01206-x
    [Google Scholar]
  27. S. M. Shaikh, , V. S. Hariharan, , S. K. Yadav, , B. S. Murty, , Intermetallics, 2020, 127, 106926 LINK https://doi.org/10.1016/j.intermet.2020.106926
    [Google Scholar]
  28. P. S. Ocaño, , S. G. Fries, , I. Lopez-Galilea, , R. D. Kamachali, , J. Roik, , L. A. Jácome, , Mater. Des., 2022, 217, 110593 LINK https://doi.org/10.1016/j.matdes.2022.110593
    [Google Scholar]
  29. A. Raturi, , J. Aditya C, , N. P. Gurao, , K. Biswas, , J. Alloys Compd., 2019, 806, 587 LINK https://doi.org/10.1016/j.jallcom.2019.06.387
    [Google Scholar]
  30. F. Zhang, , C. Zhang, , S. L. Chen, , J. Zhu, , W. S. Cao, , U. R. Kattner, , Calphad, 2014, 45, 1 LINK https://doi.org/10.1016/j.calphad.2013.10.006
    [Google Scholar]
  31. M. Sam, , N. Radhika, , J. Tribol., 2018, 140, (2), 021606 LINK https://doi.org/10.1115/1.4037767
    [Google Scholar]
  32. N. Radhika, , J. Sasikumar, , J. Arulmozhivarman, , Silicon, 2020, 12, (11), 2769 LINK https://doi.org/10.1007/s12633-019-00370-8
    [Google Scholar]
  33. N. Liu, , P. H. Wu, , P. J. Zhou, , Z. Peng, , X. J. Wang, , Y. P. Lu, , Intermetallics, 2016, 72, 44 LINK https://doi.org/10.1016/j.intermet.2016.01.008
    [Google Scholar]
  34. J. Li, , W. Jia, , J. Wang, , H. Kou, , D. Zhang, , E. Beaugnon, , Mater. Des., 2016, 95, 183 LINK https://doi.org/10.1016/j.matdes.2016.01.112
    [Google Scholar]
  35. S. Syed Ghazi, , K. R. Ravi, , Intermetallics, 2016, 73, 40 LINK https://doi.org/10.1016/j.intermet.2016.03.002
    [Google Scholar]
  36. S. A. Krishna, , N. Radhika, , B. Saleh, , S. Manivannan, , J. Alloys Compd., 2023, 953, 170153 LINK https://doi.org/10.1016/j.jallcom.2023.170153
    [Google Scholar]
  37. N. Noble, , N. Radhika, , M. Sathishkumar, , B. Saleh, , Tribol. Int., 2023, 185, 108525 LINK https://doi.org/10.1016/j.triboint.2023.108525
    [Google Scholar]
  38. K. G. Thirugnanasambantham, , S. N. Kishan, , R. A. Sree, , A. Singh, , T. Boddu, , K. Avinash, , P. Vidyanand, , S. A. Gupta, , Int. J. Interact. Des. Manuf., 2023 LINK https://doi.org/10.1007/s12008-023-01238-3
    [Google Scholar]
  39. S. G. Ma, , J. W. Qiao, , Z. H. Wang, , H. J. Yang, , Y. Zhang, , Mater. Des., 2015, 88, 1057 LINK https://doi.org/10.1016/j.matdes.2015.09.092
    [Google Scholar]
  40. S. Q. Xia, , X. Yang, , T. F. Yang, , S. Liu, , Y. Zhang, , J. Miner. Metals Mater. Soc., 2015, 67, (10), 2340 LINK https://doi.org/10.1007/s11837-015-1568-4
    [Google Scholar]
  41. S. G. Ma, , S. F. Zhang, , M. C. Gao, , P. K. Liaw, , Y. Zhang, , J. Miner. Metals Mater. Soc., 2013, 65, (12), 1751 LINK https://doi.org/10.1007/s11837-013-0733-x
    [Google Scholar]
  42. L. M. Wang, , C. C. Chen, , J. W. Yeh, , S. T. Ke, , Mater. Chem. Phys., 2011, 126, (3), 880 LINK https://doi.org/10.1016/j.matchemphys.2010.12.022
    [Google Scholar]
  43. S. Varalakshmi, , M. Kamaraj, , B. S. Murty, , Metall. Mater. Trans. A, 2010, 41, (10), 2703 LINK https://doi.org/10.1007/s11661-010-0344-x
    [Google Scholar]
  44. W. Guo, , B. Liu, , Y. Liu, , T. Li, , A. Fu, , Q. Fang, , Y. Nie, , J. Alloys Compd., 2019, 776, 428 LINK https://doi.org/10.1016/j.jallcom.2018.10.230
    [Google Scholar]
  45. S. Mohanty, , T. N. Maity, , S. Mukhopadhyay, , S. Sarkar, , N. P. Gurao, , S. Bhowmick, , K. Biswas, , Mater. Sci. Eng.: A, 2017, 679, 299 LINK https://doi.org/10.1016/j.msea.2016.09.062
    [Google Scholar]
  46. L. Gao, , W. Liao, , H. Zhang, , J. U. Surjadi, , D. Sun, , Y. Lu, , Coatings, 2017, 7, (10), 156 LINK https://doi.org/10.3390/coatings7100156
    [Google Scholar]
  47. C.-Z. Yao, , P. Zhang, , M. Liu, , G.-R. Li, , J.-Q. Ye, , P. Liu, , Y.-X. Tong, , Electrochim. Acta, 2008, 53, (28), 8359 LINK https://doi.org/10.1016/j.electacta.2008.06.036
    [Google Scholar]
  48. M. Moorehead, , K. Bertsch, , M. Niezgoda, , C. Parkin, , M. Elbakhshwan, , K. Sridharan, , C. Zhang, , D. Thoma, , A. Couet, , Mater. Des., 2020, 187, 108358 LINK https://doi.org/10.1016/j.matdes.2019.108358
    [Google Scholar]
  49. S. Yang, , Z. Liu, , J. Pi, , Mater. Lett., 2020, 261, 127004 LINK https://doi.org/10.1016/j.matlet.2019.127004
    [Google Scholar]
  50. X. Gao, , Y. Lu, , Mater. Lett., 2019, 236, 77 LINK https://doi.org/10.1016/j.matlet.2018.10.084
    [Google Scholar]
  51. Z. Rong, , C. Wang, , Y. Wang, , M. Dong, , Y. You, , J. Wang, , H. Liu, , J. Liu, , Y. Wang, , Z. Zhu, , J. Alloys Compd., 2022, 921, 166061 LINK https://doi.org/10.1016/j.jallcom.2022.166061
    [Google Scholar]
  52. T. Zhang, , L. Xin, , F. Wu, , R. Zhao, , J. Xiang, , M. Chen, , S. Jiang, , Y. Huang, , S. Chen, , J. Mater. Sci. Technol., 2019, 35, (10), 2331 LINK https://doi.org/10.1016/j.jmst.2019.05.050
    [Google Scholar]
  53. K. B. Zhang, , Z. Y. Fu, , J. Y. Zhang, , W. M. Wang, , H. Wang, , Y. C. Wang, , Q. J. Zhang, , J. Shi, , Mater. Sci. Eng.: A, 2009, 508, (1–2), 214 LINK https://doi.org/10.1016/j.msea.2008.12.053
    [Google Scholar]
  54. J. Shi, , Y. Z. Zhang, , X. Wang, , C. L. Jiang, , M. Wang, , C. Ma, , H. Huang, , Mater. Sci. Eng.: A, 2022, 860, 144239 LINK https://doi.org/10.1016/j.msea.2022.144239
    [Google Scholar]
  55. W. Huang, , X. Wang, , J. Qiao, , Y. Wu, , J. Alloys Compd., 2022, 914, 165187 LINK https://doi.org/10.1016/j.jallcom.2022.165187
    [Google Scholar]
  56. C.-M. Lin, , C.-C. Juan, , C.-H. Chang, , C.-W. Tsai, , J.-W. Yeh, , J. Alloys Compd., 2015, 624, 100 LINK https://doi.org/10.1016/j.jallcom.2014.11.064
    [Google Scholar]
  57. M. Tan, , L. Meng, , C. Lin, , L. Ke, , Y. Liu, , J. Qu, , T. Qi, , J. Alloys Compd., 2022, 927, 167081 LINK https://doi.org/10.1016/j.jallcom.2022.167081
    [Google Scholar]
  58. Y. Qiu, , S. Thomas, , D. Fabijanic, , A. J. Barlow, , H. L. Fraser, , N. Birbilis, , Mater. Des., 2019, 170, 107698 LINK https://doi.org/10.1016/j.matdes.2019.107698
    [Google Scholar]
  59. X. Jin, , Y. Zhou, , L. Zhang, , X. Du, , B. Li, , Mater. Lett., 2018, 216, 144 LINK https://doi.org/10.1016/j.matlet.2018.01.017
    [Google Scholar]
  60. T. T. Zuo, , R. B. Li, , X. J. Ren, , Y. Zhang, , J. Magn. Magn. Mater., 2014, 371, 60 LINK https://doi.org/10.1016/j.jmmm.2014.07.023
    [Google Scholar]
  61. C. Meng, , Z. Song, , X. Qiu, , G. Wang, , C. Wu, , X. Ren, , W. Zhuang, , X. Wang, , J. Alloys Compd., 2023, 934, 167896 LINK https://doi.org/10.1016/j.jallcom.2022.167896
    [Google Scholar]
  62. C. Ni, , Y. Shi, , J. Liu, , G. Huang, , Opt. Laser Technol., 2018, 105, 257 LINK https://doi.org/10.1016/j.optlastec.2018.01.058
    [Google Scholar]
  63. H. Liu, , S. Sun, , T. Zhang, , G. Zhang, , H. Yang, , J. Hao, , Surf. Coatings Technol., 2021, 405, 126522 LINK https://doi.org/10.1016/j.surfcoat.2020.126522
    [Google Scholar]
  64. X. W. Qiu, , Y. P. Zhang, , C. G. Liu, , J. Alloys Compd., 2014, 585, 282 LINK https://doi.org/10.1016/j.jallcom.2013.09.083
    [Google Scholar]
  65. H. Zhang, , Y. Pan, , Y. He, , H. Jiao, , Appl. Surf. Sci., 2011, 257, (6), 2259 LINK https://doi.org/10.1016/j.apsusc.2010.09.084
    [Google Scholar]
  66. C. Dang, , J. U. Surjadi, , L. Gao, , Y. Lu, , Front. Mater., 2018, 5, 41 LINK https://doi.org/10.3389/fmats.2018.00041
    [Google Scholar]
  67. W. Wang, , W. Qi, , L. Xie, , X. Yang, , J. Li, , Y. Zhang, , Materials, 2019, 12, (5), 694 LINK https://doi.org/10.3390/ma12050694
    [Google Scholar]
  68. I. Kunce, , M. Polanski, , J. Bystrzycki, , Int. J. Hydrogen Energy, 2014, 39, (18), 9904 LINK https://doi.org/10.1016/j.ijhydene.2014.02.067
    [Google Scholar]
  69. L. Xue, , Y. Ding, , K. G. Pradeep, , R. Case, , H. Castaneda, , M. Paredes, , Corros. Sci., 2022, 208, 110625 LINK https://doi.org/10.1016/j.corsci.2022.110625
    [Google Scholar]
  70. K. Fujita, , K. Nakazawa, , H. Fujiwara, , S. Kikuchi, , Mater. Sci. Eng.: A, 2022, 857, 144121 LINK https://doi.org/10.1016/j.msea.2022.144121
    [Google Scholar]
  71. ‘AISI Type 316L Stainless Steet, Annealed Bar’, Material Data Sheet, ASM Aerospace Specification Metals, Pompano Beach, USA: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq316q (Accessed on 27th January, 2023)
    [Google Scholar]
  72. ‘AISI Type 304 Stainless Steel’, Material Data Sheet, ASM Aerospace Specification Metals, Pompano Beach, USA: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a (Accessed on 27th January, 2023)
  73. N. D. Stepanov, , N. Y. Yurchenko, , M. A. Tikhonovsky, , G. A. Salishchev, , J. Alloys Compd., 2016, 687, 59 LINK https://doi.org/10.1016/j.jallcom.2016.06.103
    [Google Scholar]
  74. Y. X. Zhuang, , H. D. Xue, , Z. Y. Chen, , Z. Y. Hu, , J. C. He, , Mater. Sci. Eng.: A, 2013, 572, 30 LINK https://doi.org/10.1016/j.msea.2013.01.081
    [Google Scholar]
  75. H. F. Sheng, , M. Gong, , L. M. Peng, , Mater. Sci. Eng.: A, 2013, 567, 14 LINK https://doi.org/10.1016/j.msea.2013.01.006
    [Google Scholar]
  76. P. Niu, , R. Li, , S. Zhu, , M. Wang, , C. Chen, , T. Yuan, , Opt. Laser Technol., 2020, 127, 106147 LINK https://doi.org/10.1016/j.optlastec.2020.106147
    [Google Scholar]
  77. Z. Yu, , Y. Yan, , J. Qiang, , W. Gao, , X. Wang, , X. Liu, , W. Du, , Intermetallics, 2023, 152, 107749 LINK https://doi.org/10.1016/j.intermet.2022.107749
    [Google Scholar]
  78. Ł. Rogal, , D. Kalita, , L. Litynska-Dobrzynska, , Intermetallics, 2017, 86, 104 LINK https://doi.org/10.1016/j.intermet.2017.03.019
    [Google Scholar]
  79. J. Y. He, , W. H. Liu, , H. Wang, , Y. Wu, , X. J. Liu, , T. G. Nieh, , Z. P. Lu, , Acta Mater., 2014, 62, 105 LINK https://doi.org/10.1016/j.actamat.2013.09.037
    [Google Scholar]
  80. J. Chen, , Z. Yao, , X. Wang, , Y. Lu, , X. Wang, , Y. Liu, , X. Fan, , Mater. Chem. Phys., 2018, 210, 136 LINK https://doi.org/10.1016/j.matchemphys.2017.08.011
    [Google Scholar]
  81. J. M. Park, , J. Choe, , J. G. Kim, , J. W. Bae, , J. Moon, , S. Yang, , K. T. Kim, , J.-H. Yu, , H. S. Kim, , Mater. Res. Lett., 2020, 8, (1), 1 LINK https://doi.org/10.1080/21663831.2019.1638844
    [Google Scholar]
  82. S. Wang, , M. Wu, , D. Shu, , G. Zhu, , D. Wang, , B. Sun, , Acta Mater., 2020, 201, 517 LINK https://doi.org/10.1016/j.actamat.2020.10.044
    [Google Scholar]
  83. S. Arun, , N. Radhika, , B. Saleh, , Johnson Matthey Technol. Rev., 2024, 68, (4), xxx LINK https://doi.org/10.1595/205651324X17219214368431
    [Google Scholar]
/content/journals/10.1595/205651324X17028969538851
Loading
/content/journals/10.1595/205651324X17028969538851
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): applications; future directions; high entropy alloys; microstructure; properties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test