Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Ammonia is a globally transported chemical used for a variety of applications, most notably, the production of fertiliser. Over the past decade, attention has been afforded to the use of ammonia as an energy carrier, coupling global supply of renewable energy to demand regions. Ammonia’s advantages as an energy carrier include its ease of liquefaction and established international transportation routes; overcoming its low reactivity, excessive production of nitrogen oxides and its toxicity remain as challenges. For energy applications, fuel delivery is a critical aspect of effective combustion in boilers, burners and engines. Due to its adaptable phase change characteristics, ammonia fuel may be injected as a liquid or vapour, each with respective advantages or disadvantages. The focus of this review concerns the characterisation of liquid ammonia fuel injection for combustion, including recent research findings from experimental and simulation studies. Liquid ammonia injection can result in the highly dynamic so-called ‘flashing’ or ‘flash boiling’ phenomena. Research findings have been drawn from other related applications such as accidental hazardous releases. Bespoke optical experimental rigs together with diagnostic techniques and two-phase computational fluid dynamics (CFD) simulations have enabled studies of the flashing jets under various initial or final conditions, with recent work also examining ammonia spray combustion. The review concludes with an insight into future trends and requirements for liquid ammonia combustion. Reciprocating engines for marine propulsion are cited as potential early adopters of ammonia energy.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17073140270956
2024-10-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Harper_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17073140270956&mimeType=html&fmt=ahah

References

  1. “Statistical Review of World Energy”, 72nd Edn., Energy Institute, London, UK, 2023, 64 pp LINK https://www.energyinst.org/__data/assets/pdf_file/0004/1055542/EI_Stat_Review_PDF_single_3.pdf
    [Google Scholar]
  2. A. Valera-Medina, , F. Amer-Hatem, , A. K. Azad, , I. C. Dedoussi, , M. de Joannon, , R. X. Fernandes, , P. Glarborg, , H. Hashemi, , X. He, , S. Mashruk, , J. McGowan, , C. Mounaim-Rouselle, , A. Ortiz-Prado, , A. Ortiz-Valera, , I. Rossetti, , B. Shu, , M. Yehia, , H. Xiao, , M. Costa, , Energy Fuels, 2021, 35, (9), 6964 LINK https://doi.org/10.1021/acs.energyfuels.0c03685
    [Google Scholar]
  3. T. Kandemir, , M. E. Schuster, , A. Senyshyn, , M. Behrens, , R. Schlögl, , Angew. Chem. Int. Ed., 2013, 52, (48), 12723 LINK https://doi.org/10.1002/anie.201305812
    [Google Scholar]
  4. “Global Hydrogen Review 2021”, International Energy Agency, Paris, France, October, 2021, 223 pp LINK https://www.iea.org/reports/global-hydrogen-review-2021>
    [Google Scholar]
  5. L. Lambertz, , ‘Import of Green Energy: RWE Builds Ammonia Terminal in Brunsbüttel’, RWE AG, Essen, Germany, 18th March, 2022 LINK https://www.rwe.com/en/press/rwe-ag/2022-03-18-import-of-green-enery-rwe-builds-ammonia-terminal-in-brunsbuettel/
    [Google Scholar]
  6. J. Atchison, , ‘JERA Targets 50% Ammonia-Coal Co-Firing by 2030: Four Critical Ammonia Energy Projects Included in New Funding Announcement’, Ammonia Energy Association, Ashburn, USA, 21st January, 2022 LINK https://www.ammoniaenergy.org/articles/jera-targets-50-ammonia-coal-co-firing-by-2030/
    [Google Scholar]
  7. ‘Mitsubishi Power Commences Development of World’s First Ammonia-Fired 40MW Class Gas Turbine System: Targets to Expand Lineup of Carbon-Free Power Generation Options, with Commercialization around 2025’, Mitsubishi Heavy Industries Ltd, Tokyo, Japan, 1st March, 2021 LINK https://power.mhi.com/news/20210301.html
    [Google Scholar]
  8. ‘GE Vernova and IHI Announce next Phase of the Technology Roadmap Aiming to Develop a 100% Ammonia Capable Gas Turbine Combustion System by 2030’, General Electric Company, Cincinnati, USA, 24th January, 2024 LINK https://www.ge.com/news/press-releases/ge-vernova-and-ihi-announce-next-phase-of-the-technology-roadmap-aiming-to-develop-a
    [Google Scholar]
  9. H. Kobayashi, , A. Hayakawa, , K. D. K. A. Somarathne, , E. C. Okafor, , Proc. Combust. Inst., 2019, 37, (1), 109 LINK https://doi.org/10.1016/J.PROCI.2018.09.029
    [Google Scholar]
  10. F. J. Verkamp, , M. C. Hardin, , J. R. Williams, , Symp. (Int.) Combust., 1967, 11, (1), 985 LINK https://doi.org/10.1016/S0082-0784(67)80225-X
    [Google Scholar]
  11. J. Shinjo, , Energies, 2018, 11, (11), 2971 LINK https://doi.org/10.3390/en11112971
    [Google Scholar]
  12. Z. An, , J. Xing, , A. L. Pillai, , R. Kurose, , Fuel, 2024, 357, (A), 129660 LINK https://doi.org/10.1016/j.fuel.2023.129660
    [Google Scholar]
  13. V. Cleary, , P. Bowen, , H. Witlox, , J. Hazard. Mater., 2007, 142, (3), 786 LINK https://doi.org/10.1016/j.jhazmat.2006.06.125
    [Google Scholar]
  14. S. Hanna, , R. Britter, , E. Argenta, , J. Chang, , J. Hazard. Mater., 2012, 213–214, 406 LINK https://doi.org/10.1016/j.jhazmat.2012.02.013
    [Google Scholar]
  15. M. Xu, , Y. Zhang, , W. Zeng, , G. Zhang, , M. Zhang, , SAE Int. J. Fuels Lubr., 2013, 6, (1), 137 LINK https://doi.org/10.4271/2013-01-1614
    [Google Scholar]
  16. Y. Kitamura, , H. Morimitsu, , T. Takahashi, , Ind. Eng. Chem. Fundamen., 1986, 25, (2), 206 LINK https://doi.org/10.1021/i100022a005
    [Google Scholar]
  17. S. Colson, , H. Yamashita, , K. Oku, , K. D. K. A. Somarathne, , T. Kudo, , A. Hayakawa, , H. Kobayashi, , Fuel, 2023, 348, 128612 LINK https://doi.org/10.1016/j.fuel.2023.128612
    [Google Scholar]
  18. H. W. M. Witlox, , M. Harper, , A. Oke, , P. J. Bowen, , P. Kay, , J. Loss Prevent. Proc. Ind., 2010, 23, (6), 831 LINK https://doi.org/10.1016/j.jlp.2010.07.004
    [Google Scholar]
  19. J. Shin, , S. Park, , Fuel, 2023, 342, 127841 LINK https://doi.org/10.1016/j.fuel.2023.127841
    [Google Scholar]
  20. M. H. Davy, , P. Williams, , ‘The Effects of Flash Boiling on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine’, in “Direkteinspritzung im Ottomotor II”, ed. U. Spicher, , Expert Verlag, Tübingen, Germany, 2000, pp. 154170
    [Google Scholar]
  21. S. Li, , T. Li, , N. Wang, , X. Zhou, , R. Chen, , P. Yi, , Fuel, 2022, 324, (B), 124683 LINK https://doi.org/10.1016/j.fuel.2022.124683
    [Google Scholar]
  22. Z. Zhang, , T. Li, , R. Chen, , N. Wang, , Y. Wei, , D. Wu, , Fuel, 2021, 304, 121408 LINK https://doi.org/10.1016/j.fuel.2021.121408
    [Google Scholar]
  23. R. Pelé, , C. Mounaïm-Rousselle, , P. Bréquigny, , C. Hespel, , J. Bellettre, , Fuels, 2021, 2, (3), 253 LINK https://doi.org/10.3390/fuels2030015
    [Google Scholar]
  24. A. H. Lefebvre, , D. R. Ballal, , “Gas Turbine Combustion: Alternative Fuels and Emissions”, 3rd Edn., Taylor & Francis Group LLC, Boca Raton, USA, 2010, 557 pp LINK https://doi.org/10.1201/9781420086058
    [Google Scholar]
  25. M. A. A. Rincon, , ‘Novel PLIF Techniques for Analysis of G-DI Spray Dynamics’, PhD Thesis, School of Engineering, Cardiff University, Wales, UK, 2009, 215 pp LINK https://orca.cardiff.ac.uk/id/eprint/54816/
    [Google Scholar]
  26. Y. Fang, , X. Ma, , Y. Zhang, , Y. Li, , K. Zhang, , C. Jiang, , Z. Wang, , S. Shuai, , Energies, 2023, 16, (6), 2843 LINK https://doi.org/10.3390/en16062843
    [Google Scholar]
  27. J. Zembi, , M. Battistoni, , A. Pandal, , C. Rousselle, , R. Pelé, , P. Brequigny, , C. Hespel, , J. Ammonia Energy, 2023, 1, (1), 59 LINK https://doi.org/10.18573/jae.13
    [Google Scholar]
  28. H. Hiroyasu, , T. Kadota, , M. Arai, , ‘Supplementary Comments: Fuel Spray Characterization in Diesel Engines’, in “Combustion Modeling in Reciprocating Engines”, eds. J. N. Mattavi, , C. A. Amann, , Plenum Press, New York, USA, 1980, pp. 369407 LINK https://doi.org/10.1007/978-1-4899-5298-1_12
    [Google Scholar]
  29. J. D. Naber, , D. L. Siebers, , SAE Technical Paper 960034, SAE International, Warrendale, USA, 1st February, 1996, 32 pp LINK https://www.sae.org/publications/technical-papers/content/960034/
    [Google Scholar]
  30. M. A. Comer, , P. J. Bowen, , S. M. Sapsford, , S. I. Kwon, , Int. J. Auto.Technol., 2004, 5, (3), 145 LINK https://www.ijat.net/journal/view.php?number=178
    [Google Scholar]
  31. P. J. Bowen, , L. R. J. Cameron, , Proc. Saf. Environ. Protect., 1999, 77, (1), 22 LINK https://doi.org/10.1205/095758299529749
    [Google Scholar]
  32. Z. An, , J. Xing, , R. Kurose, , Fuel, 2023, 345, 128229 LINK https://doi.org/10.1016/j.fuel.2023.128229
    [Google Scholar]
  33. E. C. Okafor, , O. Kurata, , H. Yamashita, , T. Inoue, , T. Tsujimura, , N. Iki, , A. Hayakawa, , S. Ito, , M. Uchida, , H. Kobayashi, , Appl. Energy Combust. Sci., 2021, 7, 100038 LINK https://doi.org/10.1016/j.jaecs.2021.100038
    [Google Scholar]
  34. E. C. Okafor, , H. Yamashita, , A. Hayakawa, , K. D. K. A. Somarathne, , T. Kudo, , T. Tsujimura, , M. Uchida, , S. Ito, , H. Kobayashi, , Fuel, 2021, 287, 119433 LINK https://doi.org/10.1016/j.fuel.2020.119433
    [Google Scholar]
  35. V. Scharl, , T. Sattelmayer, , Fuel, 2024, 358, (B), 130201 LINK https://doi.org/10.1016/j.fuel.2023.130201
    [Google Scholar]
  36. X. Zhou, , T. Li, , N. Wang, , X. Wang, , R. Chen, , S. Li, , Renew. Sustain. Energy Rev., 2023, 173, 113108 LINK https://doi.org/10.1016/j.rser.2022.113108
    [Google Scholar]
  37. Z. An, , J. Xing, , A. L. Pillai, , R. Kurose, , ‘Evaluation of Flamelet-Based Models for Liquid Ammonia Combustion in a Temporally Evolving Mixing Layer’, arXiv:2312.01665 [physics.flu-dyn], 2023 LINK https://doi.org/10.48550/arXiv.2312.01665
  38. ‘Ammonia Technology Roadmap – Analysis’, International Energy Agency, Paris, France, 2021, 168 pp LINK https://www.iea.org/reports/ammonia-technology-roadmap
    [Google Scholar]
  39. ‘The World’s First Clean Ammonia-Powered Container Ship’, Yara International ASA, Oslo, Norway, 30th November, 2023 LINK https://www.yara.com/corporate-releases/the-worlds-first-clean-ammonia-powered-container-ship/
    [Google Scholar]
  40. T. Barlow-Brown, , ‘Japanese Consortium Signs Contracts for Construction of Ammonia-Fuelled Gas Carrier’, The Royal Institute of Naval Architects, London, UK, 27th January, 2024 LINK https://rina.org.uk/publications/the-naval-architect/japanese-consortium-signs-contracts-for-construction-of-ammonia-fuelled-gas-carrier/
    [Google Scholar]
  41. “Alternative Fuels Outlook for Shipping: An Overview of Alternative Fuels from a Well-to-Wake Perspective”, White Paper, Bureau Veritas, Courbevoie, France, 4th October, 2022 LINK https://marine-offshore.bureauveritas.com/newsroom/alternative-fuels-outlook-shipping
    [Google Scholar]
/content/journals/10.1595/205651324X17073140270956
Loading
/content/journals/10.1595/205651324X17073140270956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test