Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Compared to other energy-generating technologies and energy conversion devices, intermediate-temperature solid oxide fuel cells (IT-SOFCs) have gained significant attention from energy experts due to its high energy density, moderate operating temperature (600–800°C), low emissions and reliability. Enhancing the performance of IT-SOFCs requires suitable and excellent cathode materials. Thus, a perovskite-type NdBaZrFeO (NBZFO) material was synthesised traditional solid-state reaction technique and analysed as a potential cathode material for IT-SOFCs. Analysis of X-ray diffraction data (XRD) revealed a single-phase perovskite material that crystallises in cubic space group (pm-3m). The thermal and electrochemical properties were analysed with the aid of thermogravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). NBZFO has an electrical conductivity in air of 80 S cm−1 at 400°C and a polarisation resistance (Rp) of 0.106 Ω cm2 at 800°C. TGA reveals a slight loss in weight of about 0.58%, thereby suggesting a highly stable cathode material for IT-SOFC. Electrochemical investigation shows that NBZFO has good electronic and ionic conductivity and excellent oxygen stichometry. Further studies are required to understand the effects of varying B-site composition of the cathode material.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17048121572464
2024-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Omeiza_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17048121572464&mimeType=html&fmt=ahah

References

  1. L. A. Omeiza, , A. M. Abdalla, , B. Wei, , A. Dhanasekaran, , Y. Subramanian, , S. Afroze, , M. S. Reza, , S. A. Bakar, , A. K. Azad, , Energies, 2023, 16, (4), 1876 LINK https://doi.org/10.3390/en16041876
    [Google Scholar]
  2. S. Afroze, , N. Torino, , P. F. Henry, , M. S. Reza, , Q. Cheok, , A. K. Azad, , Data Brief, 2020, 29, 105173 LINK https://doi.org/10.1016/j.dib.2020.105173
    [Google Scholar]
  3. I. Syazaidah, , M. S. Abu Bakar, , M. S. Reza, , A. K. Azad, , J. Environ. Manage., 2021, 297, 113407 LINK https://doi.org/10.1016/j.jenvman.2021.113407
    [Google Scholar]
  4. M. M. Rahman, , A. M. Abdalla, , L. A. Omeiza, , V. Raj, , S. Afroze, , M. S. Reza, , M. R. Somalu, , A. K. Azad, , Processes, 2023, 11, (9), 2728 LINK https://doi.org/10.3390/pr11092728
    [Google Scholar]
  5. Y. Dong, , J. Li, , Chem. Rev., 2022, 123, (2), 811 LINK https://doi.org/10.1021/acs.chemrev.2c00251
    [Google Scholar]
  6. A. Ndubuisi, , S. Abouali, , K. Singh, , V. Thangadurai, , J. Mater. Chem. A, 2022, 10, (5), 2196 LINK https://doi.org/10.1039/d1ta08475e
    [Google Scholar]
  7. S. H. Woo, , K. E. Song, , S.-W. Baek, , H. Kang, , W. Choi, , T. H. Shin, , J.-Y. Park, , J. H. Kim, , Energies, 2021, 14, (20), 6739 LINK https://doi.org/10.3390/en14206739
    [Google Scholar]
  8. M. Wu, , H. Cai, , F. Jin, , N. Sun, , J. Xu, , L. Zhang, , X. Han, , S. Wang, , X. Su, , W. Long, , L. Wang, , L. Zhang, , J. Eur. Ceram. Soc., 2021, 41, (4), 2682 LINK https://doi.org/10.1016/j.jeurceramsoc.2020.11.035
    [Google Scholar]
  9. S. Wang, , J. Xu, , M. Wu, , Z. Song, , L. Wang, , L. Zhang, , J. Yang, , W. Long, , L. Zhang, , J. Alloys Compd., 2021, 872, 159701 LINK https://doi.org/10.1016/j.jallcom.2021.159701
    [Google Scholar]
  10. C. Timurkutluk, , F. Yildirim, , F. Toruntay, , S. Onbilgin, , M. Yagiz, , B. Timurkutluk, , Int. J. Hydrogen Energy, 2023, 48, (26), 9833 LINK https://doi.org/10.1016/j.ijhydene.2022.12.141
    [Google Scholar]
  11. Y. Lim, , J. Park, , H. Lee, , M. Ku, , Y.-B. Kim, , Nano Energy, 2021, 90, (A), 106524 LINK https://doi.org/10.1016/j.nanoen.2021.106524
    [Google Scholar]
  12. Z. Feng, , W. T. Hong, , D. D. Fong, , Y.-L. Lee, , Y. Yacoby, , D. Morgan, , Y. Shao-Horn, , Acc. Chem. Res., 2016, 49, (5), 966 LINK https://doi.org/10.1021/acs.accounts.5b00555
    [Google Scholar]
  13. M. Pidburtnyi, , B. Zanca, , C. Coppex, , S. Jimenez-Villegas, , V. Thangadurai, , Chem. Mater., 2021, 33, (12), 4249 LINK https://doi.org/10.1021/acs.chemmater.1c00771
    [Google Scholar]
  14. T.-H. Shen, , L. Spillane, , J. Vavra, , T. H. M. Pham, , J. Peng, , Y. Shao-Horn, , V. Tileli, , J. Am. Chem. Soc., 2020, 142, (37), 15876 LINK https://doi.org/10.1021/jacs.0c06268
    [Google Scholar]
  15. Y. Sakaki, , Y. Takeda, , A. Kato, , N. Imanishi, , O. Yamamoto, , M. Hattori, , M. Iio, , Y. Esaki, , Solid State Ionics, 1999, 118, (3–4), 187 LINK https://doi.org/10.1016/s0167-2738(98)00440-8
    [Google Scholar]
  16. X. Liu, , F. Jin, , N. Sun, , J. Li, , Y. Shen, , F. Wang, , J. Li, , Ceram. Int., 2021, 47, (23), 33886 LINK https://doi.org/10.1016/j.ceramint.2021.08.301
    [Google Scholar]
  17. D. Tsvetkov, , N. Tsvetkova, , I. Ivanov, , D. Malyshkin, , V. Sereda, , A. Zuev, , Energies, 2019, 12, (3), 417 LINK https://doi.org/10.3390/en12030417
    [Google Scholar]
  18. X. Zhu, , C. Qian, , F. Sun, , L. Zhang, , X. Liu, , D. Li, , J. Alloys Compd., 2019, 802, 415 LINK https://doi.org/10.1016/j.jallcom.2019.06.231
    [Google Scholar]
  19. Y. Shen, , Y. Song, , Y. Zhao, , J. Zhao, , M. Yan, , Q. Lu, , Y. Bu, , J. Alloys Compd., 2022, 928, 167029 LINK https://doi.org/10.1016/j.jallcom.2022.167029
    [Google Scholar]
  20. ‘Standard Test Method for Compositional Analysis by Thermogravimetry’, ASTM E1131-20, ASTM International, USA, 21st April, 2020 LINK https://www.astm.org/e1131-20.html
    [Google Scholar]
  21. M. A. S. A. K. A. Hameed, , A. Muchtar, , J. Raharjo, , D. S. Khaerudini, , Int. J. Integr. Eng., 2022, 14, (2), 121 LINK https://doi.org/10.30880/ijie.2022.14.02.017
    [Google Scholar]
  22. M. Choolaei, , E. Jakubczyk, , B. A. Horri, , Electrochim. Acta, 2023, 445, 142057 LINK https://doi.org/10.1016/j.electacta.2023.142057
    [Google Scholar]
  23. A. P. Khandale, , R. V. Kumar, , S. S. Bhoga, , Bull. Mater. Sci., 2023, 46, 119 LINK https://doi.org/10.1007/s12034-023-02949-9
    [Google Scholar]
  24. J. de Dios Sirvent, , F. Buzi, , F. Baiutti, , A. Tarancón, , ‘Advances in Nanoengineered Air Electrodes: Towards High-Performance Solid Oxide Cells’, In “Nanoengineered Materials for Solid Oxide Cells”, ed. K. Develos-Bagarinao, , IOP Publishing Ltd, London, UK, 2023, pp. 1-11-35 LINK https://doi.org/10.1088/978-0-7503-4064-9ch1
    [Google Scholar]
  25. J. Gao, , Y. Liu, , Y. Gao, , M. Yuan, , Z. Wang, , Z. , , Q. Li, , B. Wei, , Chem. Eng. J., 2023, 452, (Part 4), 139584 LINK https://doi.org/10.1016/j.cej.2022.139584
    [Google Scholar]
  26. Z. Li, , T. Wu, , Z. Zhang, , H. Sun, , X. Guo, , Q. Hu, , Y. Feng, , J. Power Sources, 2024, 591, 233898 LINK https://doi.org/10.1016/j.jpowsour.2023.233898
    [Google Scholar]
  27. B. Admasu Beshiwork, , X. Wan, , M. Xu, , H. Guo, , B. Sirak Teketel, , Y. Chen, , J. Song Chen, , T. Li, , E. Traversa, , J. Energy Chem., 2024, 88, 306 LINK https://doi.org/10.1016/j.jechem.2023.09.015
    [Google Scholar]
  28. Y. Qian, , Q. Ruan, , M. Xue, , L. Chen, , J. Energy Chem., 2024, 89, 41 LINK https://doi.org/10.1016/j.jechem.2023.10.028
    [Google Scholar]
  29. L. Chen, , J. Jing, , P. Lun, , P. Zhang, , Z. Zheng, , H. Wang, , Z. Yang, , Int. J. Hydrogen Energy, 2023, 48, (100), 39981 LINK https://doi.org/10.1016/j.ijhydene.2023.07.041
    [Google Scholar]
  30. A. Idrees, , X. Jiang, , G. Liu, , H. Luo, , G. Jia, , Q. Zhang, , L. Jiang, , X. Li, , B. Xu, , ChemistryOpen, 2018, 7, (9), 688 LINK https://doi.org/10.1002/open.201800097
    [Google Scholar]
  31. R. Mandal, , S. K. Behera, , S. K. Pratihar, , J. Solid State Electrochem., 2023, 28, (6), 1873 LINK https://doi.org/10.1007/s10008-023-05578-8
    [Google Scholar]
  32. J. Li, , M. Zou, , W. Chen, , X. Hu, , J. Zhou, , X. Jiang, , Thin Solid Films, 2023, 768, 139692 LINK https://doi.org/10.1016/j.tsf.2023.139692
    [Google Scholar]
  33. M. Kiani, , M. H. Paydar, , J. Mater. Sci.: Mater. Electron., 2023, 34, 1366 LINK https://doi.org/10.1007/s10854-023-10773-4
    [Google Scholar]
  34. J. Zan, , S. Wang, , D. Zheng, , F. Li, , W. Chen, , Q. Pei, , L. Jiang, , Mater. Res. Bull., 2021, 137, 111173 LINK https://doi.org/10.1016/j.materresbull.2020.111173
    [Google Scholar]
  35. Y. Chen, , H. Cai, , J. Xu, , L. Qu, , L. Zhang, , Solid State Sci., 2019, 97, 106005 LINK https://doi.org/10.1016/j.solidstatesciences.2019.106005
    [Google Scholar]
  36. Q. Zhou, , L. Qu, , T. Zhang, , Y. He, , C. Zhao, , M. Wang, , T. Wei, , Y. Zhang, , J. Alloys Compd., 2020, 824, 153967 LINK https://doi.org/10.1016/j.jallcom.2020.153967
    [Google Scholar]
  37. X. Jiang, , J. Wang, , G. Jia, , Z. Qie, , Y. Shi, , A. Idrees, , Q. Zhang, , L. Jiang, , Int. J. Hydrogen Energy, 2017, 42, (9), 6281 LINK https://doi.org/10.1016/j.ijhydene.2016.12.076
    [Google Scholar]
  38. N. Ekraminejad, , M. Jafari, , T. Amiri, , E. Shahsavari, , H. Salamati, , M. Ranjbar, , Mater. Chem. Phys., 2022, 278, 125680 LINK https://doi.org/10.1016/j.matchemphys.2021.125680
    [Google Scholar]
  39. A. M. Abdalla, , S. Hossain, , J. Zhou, , P. M. I. Petra, , S. Erikson, , C. D. Savaniu, , J. T. S. Irvine, , A. K. Azad, , Ceram. Int., 2017, 43, (17), 15932 LINK https://doi.org/10.1016/j.ceramint.2017.08.170
    [Google Scholar]
  40. A. E. Kisa, , O. Demircan, , J. Sol-Gel Sci. Technol., 2017, 82, 352 LINK https://doi.org/10.1007/s10971-017-4334-y
    [Google Scholar]
  41. S. Zhen, , W. Sun, , P. Li, , G. Tang, , D. Rooney, , K. Sun, , X. Ma, , J. Power Sources, 2016, 315, 140 LINK https://doi.org/10.1016/j.jpowsour.2016.03.046
    [Google Scholar]
  42. L. Gao, , Q. Li, , L. Sun, , X. Zhang, , L. Huo, , H. Zhao, , J.-C. Grenier, , J. Power Sources, 2017, 371, 86 LINK https://doi.org/10.1016/j.jpowsour.2017.10.036
    [Google Scholar]
  43. L. Gao, , M. Zhu, , Q. Li, , L. Sun, , H. Zhao, , J.-C. Grenier, , J. Alloys Compd., 2017, 700, 29 LINK https://doi.org/10.1016/j.jallcom.2017.01.026
    [Google Scholar]
  44. Y. Bu, , Q. Zhong, , D.-C. Chen, , Y. Chen, , S. Y. Lai, , T. Wei, , H. Sun, , D. Ding, , M. Liu, , J. Power Sources, 2016, 319, 178 LINK https://doi.org/10.1016/j.jpowsour.2016.04.064
    [Google Scholar]
  45. M. Li, , Y. Ren, , Z. Zhu, , S. Zhu, , F. Chen, , Y. Zhang, , C. Xia, , Electrochim. Acta, 2016, 191, 651 LINK https://doi.org/10.1016/j.electacta.2016.01.164
    [Google Scholar]
  46. Z. Zhu, , Z. Wei, , Y. Zhao, , M. Chen, , S. Wang, , Electrochim. Acta, 2017, 250, 203 LINK https://doi.org/10.1016/j.electacta.2017.08.059
    [Google Scholar]
  47. H.-X. Zhang, , J.-X. Yang, , P.-F. Wang, , C.-G. Yao, , X.-D. Yu, , F.-N. Shi, , Solid State Ionics, 2023, 391, 116144 LINK https://doi.org/10.1016/j.ssi.2023.116144
    [Google Scholar]
  48. C. Sun, , Y. Shen, , F. Wang, , Q. Duan, , Mater. Lett., 2023, 333, 133687 LINK https://doi.org/10.1016/j.matlet.2022.133687
    [Google Scholar]
/content/journals/10.1595/205651324X17048121572464
Loading
/content/journals/10.1595/205651324X17048121572464
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test