Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Part II of this review continues to explore the connection between Cu/ZnO-based catalysts properties and methanol synthesis activity. This work continues from Part I (1).

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Conflicts of Interests: Author declares no conflict of interest.
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17176890228217
2024-10-01
2024-09-01
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Alsalmi4_16b_Imp_Pt2.html?itemId=/content/journals/10.1595/205651325X17176890228217&mimeType=html&fmt=ahah

References

  1. M. Al Salmi, , Johnson Matthey Technol. Rev., 2024, 68, (4), 465 LINK https://doi.org/10.1595/205651324X17104276393919
    [Google Scholar]
  2. F. H. P. M. Habraken, , G. A. Bootsma, , P. Hofmann, , S. Hachicha, , A. M. Bradshaw, , Surf. Sci., 1979, 88, (2–3), 285 LINK https://doi.org/10.1016/0039-6028(79)90076-1
    [Google Scholar]
  3. R. A. Bennett, , S. Poulston, , M. Bowker, , J. Chem. Phys., 1998, 108, (16), 6916 LINK https://doi.org/10.1063/1.476106
    [Google Scholar]
  4. J. A. Rodriguez, , S. D. Senanayake, , D. Stacchiola, , P. Liu, , J. Hrbek, , Acc. Chem. Res., 2014, 47, (3), 773 LINK https://doi.org/10.1021/ar400182c
    [Google Scholar]
  5. Y. Li, , S. H. Chan, , Q. Sun, , Nanoscale, 2015, 7, (19), 8663 LINK https://doi.org/10.1039/c5nr00092k
    [Google Scholar]
  6. S. Günther, , L. Zhou, , R. Imbihl, , M. Hävecker, , A. Knop-Gericke, , E. Kleimenov, , R. Schlögl, , ‘In situ X-ray Photoelectron Spectroscopy of the Methanol Oxidation Over Cu(110)’, 2005: https://pure.mpg.de/rest/items/item_739113/component/file_739112/content (Accessed on 14th September 2023)
    [Google Scholar]
  7. A. A. Khassin, , V. V Pelipenko, , T. P. Minyukova, , V. I. Zaikovskii, , D. I. Kochubey, , T. M. Yurieva, , Catal. Today, 2006, 112, (1–4), 143 LINK https://doi.org/10.1016/j.cattod.2005.11.047
    [Google Scholar]
  8. Y. Yang, , J. Evans, , J. A. Rodriguez, , M. G. White, , P. Liu, , Phys. Chem. Chem. Phys., 2010, 12, (33), 9909 LINK https://doi.org/10.1039/c001484b
    [Google Scholar]
  9. L. C. Grabow, , M. Mavrikakis, , ACS Catal., 2011, 1, (4), 365 LINK https://doi.org/10.1021/cs200055d
    [Google Scholar]
  10. M. Behrens, , F. Studt, , I. Kasatkin, , S. Kühl, , M. Hävecker, , F. Abild-Pedersen, , S. Zander, , F. Girgsdies, , P. Kurr, , B.-L. Kniep, , M. Tovar, , R. W. Fischer, , J. K. Nørskov, , R. Schlögl, , Science, 2012, 336, (6083), 893 LINK https://doi.org/10.1126/science.1219831
    [Google Scholar]
  11. A. Chutia, , I. P. Silverwood, , M. R. Farrow, , D. O. Scanlon, , P. P. Wells, , M. Bowker, , S. F. Parker, , C. R. A. Catlow, , Surf. Sci., 2016, 653, 45 LINK https://doi.org/10.1016/j.susc.2016.05.002
    [Google Scholar]
  12. M. D. Porosoff, , B. Yan, , J. G. Chen, , Energy Environ. Sci., 2016, 9, (1), 62 LINK https://doi.org/10.1039/c5ee02657a
    [Google Scholar]
  13. N. Atodiresei, , K. Schroeder, , S. Blügel, , Phys. Rev. B, 2007, 75, (11), 115407 LINK https://doi.org/10.1103/PhysRevB.75.115407
    [Google Scholar]
  14. Z. Hu, , R. J. Boyd, , J. Chem. Phys., 2000, 112, 9562 LINK https://doi.org/10.1063/1.481573
    [Google Scholar]
  15. J. R. B. Gomes, , J. A. N. F. Gomes, , Surf. Sci., 1999, 432, (3), 279 LINK https://doi.org/10.1016/s0039-6028(99)00605-6
    [Google Scholar]
  16. N. Atodiresei, , V. Caciuc, , K. Schroeder, , S. Blügel, , Phys. Rev. B, 2007, 76, (11), 115433 LINK https://doi.org/10.1103/physrevb.76.115433
    [Google Scholar]
  17. S. Poulston, , R. A. Bennett, , A. H. Jones, , M. Bowker, , Phys. Rev. B, 1997, 55, (19), 12888 LINK https://doi.org/10.1103/physrevb.55.12888
    [Google Scholar]
  18. Z.-M. Hu, , K. Takahashi, , H. Nakatsuji, , Surf. Sci., 1999, 442, (1), 90 LINK https://doi.org/10.1016/s0039-6028(99)00900-0
    [Google Scholar]
  19. J. P. P. Ramalho, , J. R. B. Gomes, , F. Illas, , RSC Adv., 2013, 3, (32), 13085 LINK https://doi.org/10.1039/c3ra40713f
    [Google Scholar]
  20. C. W. Bauschlicher, , J. Chem. Phys., 1994, 101, (4), 3250 LINK https://doi.org/10.1063/1.467572
    [Google Scholar]
  21. J. R. B. Gomes, , J. A. N. F. Gomes, , Surf. Sci., 2001, 471, (1–3), 59 LINK https://doi.org/10.1016/s0039-6028(00)00881-5
    [Google Scholar]
  22. G. J. Millar, , C. H. Rochester, , K. C. Waugh, , J. Chem. Soc. Faraday Trans., 1992, 88, (15), 2257 LINK https://doi.org/10.1039/ft9928802257
    [Google Scholar]
  23. L. Jin, , Y. Wang, , Phys. Chem. Chem. Phys., 2017, 19, (20), 12992 LINK https://doi.org/10.1039/c7cp01715d
    [Google Scholar]
  24. S. Kattel, , P. J. Ramírez, , J. G. Chen, , J. A. Rodriguez, , P. Liu, , Science, 2017, 355, (6331), 1296 LINK https://doi.org/10.1126/science.aal3573
    [Google Scholar]
  25. E. M. Kaidashev, , M. Lorenz, , H. von Wenckstern, , A. Rahm, , H.-C. Semmelhack, , K.-H. Han, , G. Benndorf, , C. Bundesmann, , H. Hochmuth, , M. Grundmann, , Appl. Phys. Lett., 2003, 82, (22), 3901 LINK https://doi.org/10.1063/1.1578694
    [Google Scholar]
  26. B. P. Zhang, , N. T. Binh, , Y. Segawa, , K. Wakatsuki, , N. Usami, , Appl. Phys. Lett., 2003, 83, (8), 1635 LINK https://doi.org/10.1063/1.1605803
    [Google Scholar]
  27. S. Desgreniers, , Phys. Rev. B, 1998, 58, (21), 14102 LINK https://doi.org/10.1103/physrevb.58.14102
    [Google Scholar]
  28. H. Karzel, , W. Potzel, , M. Köfferlein, , W. Schiessl, , M. Steiner, , U. Hiller, , G. M. Kalvius, , D. W. Mitchell, , T. P. Das, , P. Blaha, , K. Schwarz, , M. P. Pasternak, , Phys. Rev. B, 1996, 53, (17), 11425 LINK https://doi.org/10.1103/physrevb.53.11425
    [Google Scholar]
  29. R. Ahuja, , L. Fast, , O. Eriksson, , J. M. Wills, , B. Johansson, , J. Appl. Phys., 1998, 83, (12), 8065 LINK https://doi.org/10.1063/1.367901
    [Google Scholar]
  30. J. E. Jaffe, , A. C. Hess, , Phys. Rev. B, 1993, 48, (11), 7903 LINK https://doi.org/10.1103/physrevb.48.7903
    [Google Scholar]
  31. J. E. Jaffe, , J. A. Snyder, , Z. Lin, , A. C. Hess, , Phys. Rev. B, 2000, 62, (3), 1660 LINK https://doi.org/10.1103/physrevb.62.1660
    [Google Scholar]
  32. A. Zaoui, , W. Sekkal, , Phys. Rev. B, 2002, 66, (17), 174106 LINK https://doi.org/10.1103/physrevb.66.174106
    [Google Scholar]
  33. J. Nause, , B. Nemeth, , Semicond. Sci. Technol., 2005, 20, (4), S45 LINK https://doi.org/10.1088/0268-1242/20/4/005
    [Google Scholar]
  34. R. G. Herman, , K. Klier, , G. W. Simmons, , B. P. Finn, , J. B. Bulko, , T. P. Kobylinski, , J. Catal., 1979, 56, (3), 407 LINK https://doi.org/10.1016/0021-9517(79)90132-5
    [Google Scholar]
  35. R. P. Eischens, , W. A. Pliskin, , M. J. D. Low, , J. Catal., 1962, 1, (2), 180 LINK https://doi.org/10.1016/0021-9517(62)90022-2
    [Google Scholar]
  36. A. Beltrán, , J. Andrés, , M. Calatayud, , J. B. L. Martins, , Chem. Phys. Lett., 2001, 338, (4–6), 224 LINK https://doi.org/10.1016/s0009-2614(01)00238-x
    [Google Scholar]
  37. T. Shishido, , Y. Yamamoto, , H. Morioka, , K. Takaki, , K. Takehira, , Appl. Catal. A: Gen., 2004, 263, (2), 249 LINK https://doi.org/10.1016/j.apcata.2003.12.018
    [Google Scholar]
  38. R. Burch, , S. E. Golunski, , M. S. Spencer, , J. Chem. Soc. Faraday Trans., 1990, 86, (15), 2683 LINK https://doi.org/10.1039/ft9908602683
    [Google Scholar]
  39. I. Kasatkin, , P. Kurr, , B. Kniep, , A. Trunschke, , R. Schlögl, , Angew. Chem. Int. Ed., 2007, 46, (38), 7324 LINK https://doi.org/10.1002/anie.200702600
    [Google Scholar]
  40. D. Kopač, , B. Likozar, , M. Huš, , Appl. Surf. Sci., 2019, 497, 143783 LINK https://doi.org/10.1016/j.apsusc.2019.143783
    [Google Scholar]
  41. J. Howard, , I. J. Braid, , J. Tomkinson, , J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1984, 80, (1), 225 LINK https://doi.org/10.1039/f19848000225
    [Google Scholar]
  42. C. C. Chang, , R. J. Kokes, , J. Am. Chem. Soc., 1971, 93, (25), 7107 LINK https://doi.org/10.1021/ja00754a082
    [Google Scholar]
  43. G. Hussain, , N. Sheppard, , J. Chem. Soc. Faraday Trans., 1990, 86, (9), 1615 LINK https://doi.org/10.1039/ft9908601615
    [Google Scholar]
  44. A. A. Tsyganenko, , J. Lamotte, , J. Saussey, , J. C. Lavalley, , J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1989, 85, (8), 2397 LINK https://doi.org/10.1039/f19898502397
    [Google Scholar]
  45. L. Zhang, , X. Zhang, , K. Qian, , Z. Li, , Y. Cheng, , L. L. Daemen, , Z. Wu, , W. Huang, , J. Energy Chem., 2020, 50, 351 LINK https://doi.org/10.1016/j.jechem.2020.03.038
    [Google Scholar]
  46. M. R. Gogate, , Pet. Sci. Technol., 2019, 37, (5), 603 LINK https://doi.org/10.1080/10916466.2018.1558248
    [Google Scholar]
  47. C. Álvarez Galván, , J. Schumann, , M. Behrens, , J. L. G. Fierro, , R. Schlögl, , E. Frei, , Appl. Catal. B: Environ., 2016, 195, 104 LINK https://doi.org/10.1016/j.apcatb.2016.05.007
    [Google Scholar]
  48. S. Kühl, , A. Tarasov, , S. Zander, , I. Kasatkin, , M. Behrens, , Chem. Eur. J., 2014, 20, (13), 3782 LINK https://doi.org/10.1002/chem.201302599
    [Google Scholar]
  49. I. Hegemann, , A. Schwaebe, , K. Fink, , J. Comput. Chem., 2008, 29, (13), 2302 LINK https://doi.org/10.1002/jcc.21043
    [Google Scholar]
  50. M. M.-J. Li, , Z. Zeng, , F. Liao, , X. Hong, , S. C. E. Tsang, , J. Catal., 2016, 343, 157 LINK https://doi.org/10.1016/j.jcat.2016.03.020
    [Google Scholar]
  51. E. Kampshoff, , E. Hahn, , K. Kern, , Phys. Rev. Lett., 1994, 73, (5), 704 LINK https://doi.org/10.1103/physrevlett.73.704
    [Google Scholar]
  52. M. M. Günter, , T. Ressler, , B. Bems, , C. Büscher, , T. Genger, , O. Hinrichsen, , M. Muhler, , R. Schlögl, , Catal. Lett., 2001, 71, 37 LINK https://doi.org/10.1023/a:1016696022840
    [Google Scholar]
  53. X. Dong, , F. Li, , N. Zhao, , F. Xiao, , J. Wang, , Y. Tan, , Appl. Catal. B: Environ., 2016, 191, 8 LINK https://doi.org/10.1016/j.apcatb.2016.03.014
    [Google Scholar]
  54. D. Waller, , D. Stirling, , F. S. Stone, , M. S. Spencer, , Faraday Discuss. Chem. Soc., 1989, 87, 107 LINK https://doi.org/10.1039/dc9898700107
    [Google Scholar]
  55. F. C. Meunier, , Angew. Chem. Int. Ed., 2011, 50, (18), 4053 LINK https://doi.org/10.1002/anie.201100011
    [Google Scholar]
  56. B. V. Farahani, , F. H. Rajabi, , M. Bahmani, , M. Ghelichkhani, , S. Sahebdelfar, , Appl. Catal. A: Gen., 2014, 482, 237 LINK https://doi.org/10.1016/j.apcata.2014.05.034
    [Google Scholar]
  57. A. Karelovic, , P. Ruiz, , Catal. Sci. Technol., 2015, 5, (2), 869 LINK https://doi.org/10.1039/c4cy00848k
    [Google Scholar]
  58. V. D. B. C. Dasireddy, , N. S. Štefančič, , B. Likozar, , J. CO2 Util., 2018, 28, 189 LINK https://doi.org/10.1016/j.jcou.2018.09.002
    [Google Scholar]
  59. I. U. Din, , M. S. Shaharun, , M. A. Alotaibi, , A. I. Alharthi, , A. Naeem, , J. CO2 Util., 2019, 34, 20 LINK https://doi.org/10.1016/j.jcou.2019.05.036
    [Google Scholar]
  60. H. Lei, , R. Nie, , G. Wu, , Z. Hou, , Fuel, 2015, 154, 161 LINK https://doi.org/10.1016/j.fuel.2015.03.052
    [Google Scholar]
  61. A. Urakawa, , A. Bansode, , R. V. Gaikwad, , ‘Methanol Production Process’, World Patent Appl. 2017/140800, 24th August, 2017
    [Google Scholar]
  62. T. Fujitani, , J. Nakamura, , Catal. Lett., 1998, 56, 119 LINK https://doi.org/10.1023/A:1019000927366
    [Google Scholar]
  63. M. Al Salmi, , Johnson Matthey Technol. Rev., 2024, 68, (2), 184 LINK https://doi.org/10.1595/205651324x16980703569747
    [Google Scholar]
  64. K. Mori, , N. Hashimoto, , N. Kamiuchi, , H. Yoshida, , H. Kobayashi, , H. Yamashita, , Nat. Commun., 2021, 12, (1), 3884 LINK https://doi.org/10.1038/s41467-021-24228-z
    [Google Scholar]
  65. R. Prins, , Chem. Rev., 2012, 112, (5), 2714 LINK https://doi.org/10.1021/cr200346z
    [Google Scholar]
  66. M. Spencer, , Top. Catal., 1999, 8, 259 LINK https://doi.org/10.1023/A:1019181715731
    [Google Scholar]
  67. J. Wang, , S. Funk, , U. Burghaus, , Catal. Lett., 2005, 103, (3–4), 219 LINK https://doi.org/10.1007/s10562-005-7157-3
    [Google Scholar]
  68. S. Fujita, , M. Usui, , H. Ito, , N. Takezawa, , J. Catal., 1995, 157, (2), 403 LINK https://doi.org/10.1006/jcat.1995.1306
    [Google Scholar]
  69. G. J. J. Bartley, , R. Burch, , Appl. Catal., 1988, 43, (1), 141 LINK https://doi.org/10.1016/s0166-9834(00)80907-0
    [Google Scholar]
  70. R. Burch, , R. J. Chappell, , S. E. Golunski, , Catal. Lett., 1988, 1, (12), 439 LINK https://doi.org/10.1007/bf00766204
    [Google Scholar]
  71. C. Yang, , Z. Ma, , N. Zhao, , W. Wei, , T. Hu, , Y. Sun, , Catal. Today, 2006, 115, (1–4), 222 LINK https://doi.org/10.1016/j.cattod.2006.02.077
    [Google Scholar]
  72. C. Baltes, , S. Vukojević, , F. Schüth, , J. Catal., 2008, 258, (2), 334 LINK https://doi.org/10.1016/j.jcat.2008.07.004
    [Google Scholar]
  73. G. C. Chinchen, , P. J. Denny, , D. G. Parker, , M. S. Spencer, , D. A. Whan, , Appl. Catal., 1987, 30, (2), 333 LINK https://doi.org/10.1016/s0166-9834(00)84123-8
    [Google Scholar]
  74. F. Liao, , Y. Huang, , J. Ge, , W. Zheng, , K. Tedsree, , P. Collier, , X. Hong, , S. C. Tsang, , Angew. Chem. Int. Ed., 2011, 50, (9), 2162 LINK https://doi.org/10.1002/anie.201007108
    [Google Scholar]
  75. D. S. King, , R. M. Nix, , J. Catal., 1996, 160, (1), 76 LINK https://doi.org/10.1006/jcat.1996.0125
    [Google Scholar]
  76. C. D. Wagner, , L. H. Gale, , R. H. Raymond, , Anal. Chem., 1979, 51, (4), 466 LINK https://doi.org/10.1021/ac50040a005
    [Google Scholar]
  77. J. S. Lee, , K. H. Lee, , S. Y. Lee, , Y. G. Kim, , J. Catal., 1993, 144, (2), 414 LINK https://doi.org/10.1006/jcat.1993.1342
    [Google Scholar]
  78. A. Pavlišič, , M. Huš, , A. Prašnikar, , B. Likozar, , J. Clean. Prod., 2020, 275, 122958 LINK https://doi.org/10.1016/j.jclepro.2020.122958
    [Google Scholar]
  79. Y. Yang, , ‘Rational Design of Cu-Based Nanocatalysts for the Production of Methanol’, PhD Thesis, Stony Brook University, Stony Brook, NY, USA, 2013
    [Google Scholar]
  80. J. Kiss, , J. Frenzel, , N. N. Nair, , B. Meyer, , D. Marx, , J. Chem. Phys., 2011, 134, (6), 064710 LINK https://doi.org/10.1063/1.3541826
    [Google Scholar]
  81. P. Sharma, , J. Sebastian, , S. Ghosh, , D. Creaser, , L. Olsson, , Catal. Sci. Technol., 2021, 11, (5), 1665 LINK https://doi.org/10.1039/d0cy01913e
    [Google Scholar]
  82. S. Poto, , D. V. van Berkel, , F. Gallucci, , M. F. N. d’Angelo, , Chem. Eng. J., 2022, 435, (2), 134946 LINK https://doi.org/10.1016/j.cej.2022.134946
    [Google Scholar]
  83. P. Ren, , W. Tu, , C. Wang, , S. Cheng, , W. Liu, , Z. Zhang, , Y. Tian, , Y.-F. Han, , Appl. Catal. B: Environ., 2022, 305, 121016 LINK https://doi.org/10.1016/j.apcatb.2021.121016
    [Google Scholar]
  84. J. C. Frost, , Nature, 1988, 334, (6183), 577 LINK https://doi.org/10.1038/334577a0
    [Google Scholar]
  85. D. Kopač, , B. Likozar, , M. Huš, , ACS Catal., 2020, 10, (7), 4092 LINK https://doi.org/10.1021/acscatal.9b05303
    [Google Scholar]
  86. J. Qaderi, , Int. J. Innov. Res. Sci. Stud., 2020, 3, (2), 33 LINK https://doi.org/10.53894/ijirss.v3i2.31
    [Google Scholar]
  87. A. J. Medford, , J. Sehested, , J. Rossmeisl, , I. Chorkendorff, , F. Studt, , J. K. Nørskov, , P. G. Moses, , J. Catal., 2014, 309, 397 LINK https://doi.org/10.1016/j.jcat.2013.10.015
    [Google Scholar]
  88. L. Angelo, , K. Kobl, , L. M. M. Tejada, , Y. Zimmermann, , K. Parkhomenko, , A.-C. Roger, , Comptes Rendus Chim., 2015, 18, (3), 250 LINK https://doi.org/10.1016/j.crci.2015.01.001
    [Google Scholar]
  89. H. Bai, , M. Ma, , B. Bai, , J. Zuo, , H. Cao, , L. Zhang, , Q.-F. Zhang, , V. A. Vinokurov, , W. Huang, , J. Catal., 2019, 380, 68 LINK https://doi.org/10.1016/j.jcat.2019.10.002
    [Google Scholar]
  90. S. A. French, , S. T. Bromley, , A. A. Sokol, , C. R. A. Catlow, , J. Kendrick, , S. Rogers, , P. Sherwood, , MRS Proc., 2001, 677, 93 LINK https://doi.org/10.1557/proc-677-aa9.3
    [Google Scholar]
  91. K. Klier, , Adv. Catal., 1982, 31, 243 LINK https://doi.org/10.1016/s0360-0564(08)60455-1
    [Google Scholar]
  92. C. Tisseraud, , C. Comminges, , T. Belin, , H. Ahouari, , A. Soualah, , Y. Pouilloux, , A. Le Valant, , J. Catal., 2015, 330, 533 LINK https://doi.org/10.1016/j.jcat.2015.04.035
    [Google Scholar]
  93. R. Guil-López, , N. Mota, , J. Llorente, , E. Millán, , B. Pawelec, , J. L. G. Fierro, , R. M. Navarro, , Materials, 2019, 12, (23), 3902 LINK https://doi.org/10.3390/ma12233902
    [Google Scholar]
  94. F. Arena, , G. Mezzatesta, , G. Zafarana, , G. Trunfio, , F. Frusteri, , L. Spadaro, , J. Catal., 2013, 300, 141 LINK https://doi.org/10.1016/j.jcat.2012.12.019
    [Google Scholar]
  95. G. Bonura, , M. Cordaro, , C. Cannilla, , F. Arena, , F. Frusteri, , Appl. Catal. B: Environ., 2014, 152–153, 152 LINK https://doi.org/10.1016/j.apcatb.2014.01.035
    [Google Scholar]
  96. S. Kattel, , B. Yan, , Y. Yang, , J. G. Chen, , P. Liu, , J. Am. Chem. Soc., 2016, 138, (38), 12440 LINK https://doi.org/10.1021/jacs.6b05791
    [Google Scholar]
  97. L. Qi, , J. Li, , J. Catal., 2012, 295, 59 LINK https://doi.org/10.1016/j.jcat.2012.07.019
    [Google Scholar]
  98. T. Kamsuwan, , A. Guntida, , P. Praserthdam, , B. Jongsomjit, , ACS Omega, 2022, 7, (29), 25783 LINK https://doi.org/10.1021/acsomega.2c03068
    [Google Scholar]
  99. M. M.-J. Li, , C. Chen, , T. Ayvalı, , H. Suo, , J. Zheng, , I. F. Teixeira, , L. Ye, , H. Zou, , D. O’Hare, , S. C. E. Tsang, , ACS Catal., 2018, 8, (5), 4390 LINK https://doi.org/10.1021/acscatal.8b00474
    [Google Scholar]
  100. V. Deerattrakul, , P. Puengampholsrisook, , W. Limphirat, , P. Kongkachuichay, , Catal. Today, 2018, 314, 154 LINK https://doi.org/10.1016/j.cattod.2017.12.010
    [Google Scholar]
  101. B. Zhang, , Y. Chen, , J. Li, , E. Pippel, , H. Yang, , Z. Gao, , Y. Qin, , ACS Catal., 2015, 5, (9), 5567 LINK https://doi.org/10.1021/acscatal.5b01266
    [Google Scholar]
  102. C. Zhang, , P. Liao, , H. Wang, , J. Sun, , P. Gao, , Mater. Chem. Phys., 2018, 215, 211 LINK https://doi.org/10.1016/j.matchemphys.2018.05.028
    [Google Scholar]
  103. M. Al Salmi, , Johnson Matthey Technol. Rev., 2024, 68, (4), 490 LINK https://doi.org/10.1595/205651325X17176890228226
    [Google Scholar]
/content/journals/10.1595/205651325X17176890228217
Loading
/content/journals/10.1595/205651325X17176890228217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test