Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Part II of this review examines how preparation methods influence catalyst performance and the impact of doping with elements like ceria, alumina and zirconia on CO conversion selectivity. We conclude that zinc oxide enhances copper dispersion and promotes a synergistic effect at the interface, leading to improved catalytic performance. This work presents the continuation of and conclusions from Parts I (1) and II (2).

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Conflicts of Interests: Author declares no conflict of interest.
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17176890228226
2024-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Alsalmi4_16b_Imp_Pt3.html?itemId=/content/journals/10.1595/205651325X17176890228226&mimeType=html&fmt=ahah

References

  1. M. Al Salmi, , Johnson Matthey Technol. Rev., 2024, 68, (4), 465 LINK https://doi.org/10.1595/205651324X17104276393919
    [Google Scholar]
  2. M. Al Salmi, , Johnson Matthey Technol. Rev., 2024, 68, (4), 477 LINK https://doi.org/10.1595/205651325X17176890228217
    [Google Scholar]
  3. T. Fujitani, , J. Nakamura, , Catal. Lett., 1998, 56, 119 LINK https://doi.org/10.1023/A:1019000927366
    [Google Scholar]
  4. R. G. Herman, , K. Klier, , G. W. Simmons, , B. P. Finn, , J. B. Bulko, , T. P. Kobylinski, , J. Catal., 1979, 56, (3), 407 LINK https://doi.org/10.1016/0021-9517(79)90132-5
    [Google Scholar]
  5. B. Delmon, , J. Therm. Anal. Calorim., 2007, 90, (1), 49 LINK https://doi.org/10.1007/s10973-007-8476-y
    [Google Scholar]
  6. S. Fujita, , S. Moribe, , Y. Kanamori, , M. Kakudate, , N. Takezawa, , Appl. Catal. A: Gen., 2001, 207, (1–2), 121 LINK https://doi.org/10.1016/s0926-860x(00)00616-5
    [Google Scholar]
  7. B. Bems, , M. Schur, , A. Dassenoy, , H. Junkes, , D. Herein, , R. Schlögl, , Chem. Eur. J., 2003, 9, (9), 2039 LINK https://doi.org/10.1002/chem.200204122
    [Google Scholar]
  8. D. Waller, , D. Stirling, , F. S. Stone, , M. S. Spencer, , Faraday Discuss. Chem. Soc., 1989, 87, 107 LINK https://doi.org/10.1039/dc9898700107
    [Google Scholar]
  9. A. M. Pollard, , M. S. Spencer, , R. G. Thomas, , P. A. Williams, , J. Holt, , J. R. Jennings, , Appl. Catal. A: Gen., 1992, 85, (1), 1 LINK https://doi.org/10.1016/0926-860x(92)80125-v
    [Google Scholar]
  10. C. Baltes, , S. Vukojević, , F. Schüth, , J. Catal., 2008, 258, (2), 334 LINK https://doi.org/10.1016/j.jcat.2008.07.004
    [Google Scholar]
  11. E. N. Muhamad, , R. Irmawati, , Y. H. Taufiq-Yap, , A. H. Abdullah, , B. L. Kniep, , F. Girgsdies, , T. Ressler, , Catal. Today, 2008, 131, (1–4), 118 LINK https://doi.org/10.1016/j.cattod.2007.10.010
    [Google Scholar]
  12. F. Meshkini, , M. Taghizadeh, , M. Bahmani, , Fuel, 2010, 89, (1), 170 LINK https://doi.org/10.1016/j.fuel.2009.07.007
    [Google Scholar]
  13. J. B. Friedrich, , M. S. Wainwright, , D. J. Young, , J. Catal., 1983, 80, (1), 1 LINK https://doi.org/10.1016/0021-9517(83)90223-3
    [Google Scholar]
  14. P. B. Himelfarb, , G. W. Simmons, , K. Klier, , R. G. Herman, , J. Catal., 1985, 93, (2), 442 LINK https://doi.org/10.1016/0021-9517(85)90191-5
    [Google Scholar]
  15. Y. Okamoto, , K. Fukino, , T. Imanaka, , S. Teranishi, , J. Phys. Chem., 1983, 87, (19), 3740 LINK https://doi.org/10.1021/j100242a034
    [Google Scholar]
  16. X. Dong, , F. Li, , N. Zhao, , F. Xiao, , J. Wang, , Y. Tan, , Appl. Catal. B: Environ., 2016, 191, 8 LINK https://doi.org/10.1016/j.apcatb.2016.03.014
    [Google Scholar]
  17. B. V. Farahani, , F. H. Rajabi, , M. Bahmani, , M. Ghelichkhani, , S. Sahebdelfar, , Appl. Catal. A: Gen., 2014, 482, 237 LINK https://doi.org/10.1016/j.apcata.2014.05.034
    [Google Scholar]
  18. S. Ren, , W. R. Shoemaker, , X. Wang, , Z. Shang, , N. Klinghoffer, , S. Li, , M. Yu, , X. He, , T. A. White, , X. Liang, , Fuel, 2019, 239, 1125 LINK https://doi.org/10.1016/j.fuel.2018.11.105
    [Google Scholar]
  19. M. Behrens, , J. Catal., 2009, 267, (1), 24 LINK https://doi.org/10.1016/j.jcat.2009.07.009
    [Google Scholar]
  20. W.-L. Dai, , Q. Sun, , J.-F. Deng, , D. Wu, , Y.-H. Sun, , Appl. Surf. Sci., 2001, 177, (3), 172 LINK https://doi.org/10.1016/s0169-4332(01)00229-x
    [Google Scholar]
  21. X. Guo, , D. Mao, , G. Lu, , S. Wang, , G. Wu, , Catal. Commun., 2011, 12, (12), 1095 LINK https://doi.org/10.1016/j.catcom.2011.03.033
    [Google Scholar]
  22. Y. Jiang, , S. Yang, , Z. Hua, , H. Huang, , Angew. Chem., 2009, 121, (45), 8681 LINK https://doi.org/10.1002/ange.200903444
    [Google Scholar]
  23. S. Vivekanandhan, , M. Venkateswarlu, , N. Satyanarayana, , J. Alloys Compd., 2008, 462, (1–2), 328 LINK https://doi.org/10.1016/j.jallcom.2007.08.055
    [Google Scholar]
  24. L. Shi, , C. Zeng, , Y. Jin, , T. Wang, , N. Tsubaki, , Catal. Sci. Technol., 2012, 2, (12), 2569 LINK https://doi.org/10.1039/c2cy20423a
    [Google Scholar]
  25. Z. Hong, , Y. Cao, , J. Deng, , K. Fan, , Catal. Lett., 2002, 82, 37 LINK https://doi.org/10.1023/A:1020531822590
    [Google Scholar]
  26. S. Likhittaphon, , R. Panyadee, , W. Fakyam, , S. Charojrochkul, , T. Sornchamni, , N. Laosiripojana, , S. Assabumrungrat, , P. Kim-Lohsoontorn, , Int. J. Hydrogen Energy, 2019, 44, (37), 20782 LINK https://doi.org/10.1016/j.ijhydene.2018.07.021
    [Google Scholar]
  27. L. Shi, , W. Shen, , G. Yang, , X. Fan, , Y. Jin, , C. Zeng, , K. Matsuda, , N. Tsubaki, , J. Catal., 2013, 302, 83 LINK https://doi.org/10.1016/j.jcat.2013.02.025
    [Google Scholar]
  28. L. Shi, , Y. Tan, , N. Tsubaki, , ChemCatChem, 2012, 4, (6), 863 LINK https://doi.org/10.1002/cctc.201100404
    [Google Scholar]
  29. L. Shi, , K. Tao, , R. Yang, , F. Meng, , C. Xing, , N. Tsubaki, , Appl. Catal. A: Gen., 2011, 401, (1–2), 46 LINK https://doi.org/10.1016/j.apcata.2011.04.043
    [Google Scholar]
  30. C. Huang, , D. Mao, , X. Guo, , J. Yu, , Energy Technol., 2017, 5, (11), 2100 LINK https://doi.org/10.1002/ente.201700190
    [Google Scholar]
  31. M. G. Rinaudo, , M. K. López González, , L. E. Cadús, , M. R. Morales, , J. Phys. Chem. Solids, 2023, 183, 111661 LINK https://doi.org/10.1016/j.jpcs.2023.111661
    [Google Scholar]
  32. M. Hu, , X. Lu, , C. Zhu, , T. Yang, , H. Tan, , L. Jin, , P. Kerns, , M. Meng, , S. L. Suib, , P. Gao, , J. He, , ChemCatChem, 2024, 16, (3), e202301077 LINK https://doi.org/10.1002/cctc.202301077
    [Google Scholar]
  33. C. Huang, , S. Zhang, , W. Wang, , H. Zhou, , Z. Shao, , L. Xia, , H. Wang, , Y. Sun, , ACS Catal., 2024, 14, (3), 1324 LINK https://doi.org/10.1021/acscatal.3c04608
    [Google Scholar]
  34. A. A. Ali, , E. A. El Fadaly, , N. M. Deraz, , Mater. Chem. Phys., 2021, 270, 124762 LINK https://doi.org/10.1016/j.matchemphys.2021.124762
    [Google Scholar]
  35. O. Martin, , J. Pérez-Ramírez, , Catal. Sci. Technol., 2013, 3, (12), 3343 LINK https://doi.org/10.1039/c3cy00573a
    [Google Scholar]
  36. S. Kattel, , P. J. Ramírez, , J. G. Chen, , J. A. Rodriguez, , P. Liu, , Science, 2017, 355, (6331), 1296 LINK https://doi.org/10.1126/science.aal3573
    [Google Scholar]
  37. S. Fujita, , M. Usui, , H. Ito, , N. Takezawa, , J. Catal., 1995, 157, (2), 403 LINK https://doi.org/10.1006/jcat.1995.1306
    [Google Scholar]
  38. A. Karelovic, , P. Ruiz, , Catal. Sci. Technol., 2015, 5, (2), 869 LINK https://doi.org/10.1039/c4cy00848k
    [Google Scholar]
  39. A. Karelovic, , A. Bargibant, , C. Fernández, , P. Ruiz, , Catal. Today, 2012, 197, (1), 109 LINK https://doi.org/10.1016/j.cattod.2012.07.029
    [Google Scholar]
  40. M. Behrens, , D. Brennecke, , F. Girgsdies, , S. Kißner, , A. Trunschke, , N. Nasrudin, , S. Zakaria, , N. F. Idris, , S. B. A. Hamid, , B. Kniep, , R. Fischer, , W. Busser, , M. Muhler, , R. Schlögl, , Appl. Catal. A: Gen., 2011, 392, (1–2), 93 LINK https://doi.org/10.1016/j.apcata.2010.10.031
    [Google Scholar]
  41. J. Bao, , Z. Liu, , Y. Zhang, , N. Tsubaki, , Catal. Commun., 2008, 9, (5), 913 LINK https://doi.org/10.1016/j.catcom.2007.09.034
    [Google Scholar]
  42. T. Shishido, , M. Yamamoto, , D. Li, , Y. Tian, , H. Morioka, , M. Honda, , T. Sano, , K. Takehira, , Appl. Catal. A: Gen., 2006, 303, (1), 62 LINK https://doi.org/10.1016/j.apcata.2006.01.031
    [Google Scholar]
  43. F. Zhang, , X. Xu, , Z. Qiu, , B. Feng, , Y. Liu, , A. Xing, , M. Fan, , Green Energy Environ., 2022, 7, (4), 772 LINK https://doi.org/10.1016/j.gee.2020.11.027
    [Google Scholar]
  44. S. Kaluza, , M. Behrens, , N. Schiefenhövel, , B. Kniep, , R. Fischer, , R. Schlögl, , M. Muhler, , ChemCatChem, 2011, 3, (1), 189 LINK https://doi.org/10.1002/cctc.201000329
    [Google Scholar]
  45. S. Zander, , B. Seidlhofer, , M. Behrens, , Dalt. Trans., 2012, 41, (43), 13413 LINK https://doi.org/10.1039/c2dt31236k
    [Google Scholar]
  46. W. Gao, , G. Qu, , M. Xu, , S. Chang, , W. Na, , Fuel Cells, 2021, 21, (1), 31 LINK https://doi.org/10.1002/fuce.202000032
    [Google Scholar]
  47. J.-L. Li, , T. Inui, , Appl. Catal. A: Gen., 1996, 137, (1), 105 LINK https://doi.org/10.1016/0926-860x(95)00284-7
    [Google Scholar]
  48. M. Behrens, , R. Schlögl, , Z. Anorg. Allg. Chem., 2013, 639, (15), 2683 LINK https://doi.org/10.1002/zaac.201300356
    [Google Scholar]
  49. H. Jeong, , C. H. Cho, , T. H. Kim, , React. Kinet. Mech. Catal., 2012, 106, (2), 435 LINK https://doi.org/10.1007/s11144-012-0441-5
    [Google Scholar]
  50. R. S. Schiffino, , R. P. Merrill, , J. Phys. Chem., 1993, 97, (24), 6425 LINK https://doi.org/10.1021/j100126a017
    [Google Scholar]
  51. R. Wischert, , P. Laurent, , C. Copéret, , F. Delbecq, , P. Sautet, , J. Am. Chem. Soc., 2012, 134, (35), 14430 LINK https://doi.org/10.1021/ja3042383
    [Google Scholar]
  52. T. Hyakutake, , W. van Beek, , A. Urakawa, , J. Mater. Chem. A, 2016, 4, (18), 6878 LINK https://doi.org/10.1039/c5ta09461e
    [Google Scholar]
  53. A. Bansode, , B. Tidona, , P. R. von Rohr, , A. Urakawa, , Catal. Sci. Technol., 2013, 3, (3), 767 LINK https://doi.org/10.1039/c2cy20604h
    [Google Scholar]
  54. E. Lam, , J. J. Corral-Pérez, , K. Larmier, , G. Noh, , P. Wolf, , A. Comas-Vives, , A. Urakawa, , C. Copéret, , Angew. Chem. Int. Ed., 2019, 58, (39), 13989 LINK https://doi.org/10.1002/anie.201908060
    [Google Scholar]
  55. J. Schittkowski, , H. Ruland, , D. Laudenschleger, , K. Girod, , K. Kähler, , S. Kaluza, , M. Muhler, , R. Schlögl, , Chem. Ing. Tech., 2018, 90, (10), 1419 LINK https://doi.org/10.1002/cite.201800017
    [Google Scholar]
  56. P. Sharma, , J. Sebastian, , S. Ghosh, , D. Creaser, , L. Olsson, , Catal. Sci. Technol., 2021, 11, (5), 1665 LINK https://doi.org/10.1039/d0cy01913e
    [Google Scholar]
  57. M. Huš, , D. Kopač, , B. Likozar, , ACS Catal., 2019, 9, (1), 105 LINK https://doi.org/10.1021/acscatal.8b03810
    [Google Scholar]
  58. J. Schumann, , A. Tarasov, , N. Thomas, , R. Schlögl, , M. Behrens, , Appl. Catal. A: Gen., 2016, 516, 117 LINK https://doi.org/10.1016/j.apcata.2016.01.037
    [Google Scholar]
  59. D. Li, , F. Xu, , X. Tang, , S. Dai, , T. Pu, , X. Liu, , P. Tian, , F. Xuan, , Z. Xu, , I. E. Wachs, , M. Zhu, , Nat. Catal., 2022, 5, (2), 99 LINK https://doi.org/10.1038/s41929-021-00729-4
    [Google Scholar]
  60. V. D. B. C. Dasireddy, , B. Likozar, , Renew. Energy, 2019, 140, 452 LINK https://doi.org/10.1016/j.renene.2019.03.073
    [Google Scholar]
  61. D. K. Sharma, , K. K. Sharma, , V. Kumar, , A. Sharma, , J. Mater. Sci. Mater. Electron., 2018, 29, (5), 3840 LINK https://doi.org/10.1007/s10854-017-8320-5
    [Google Scholar]
  62. T. Lunkenbein, , F. Girgsdies, , T. Kandemir, , N. Thomas, , M. Behrens, , R. Schlögl, , E. Frei, , Angew. Chem. Int. Ed., 2016, 55, (41), 12708 LINK https://doi.org/10.1002/anie.201603368
    [Google Scholar]
  63. M. Bowker, , R. A. Hadden, , H. Houghton, , J. N. K. Hyland, , K. C. Waugh, , J. Catal., 1988, 109, (2), 263 LINK https://doi.org/10.1016/0021-9517(88)90209-6
    [Google Scholar]
  64. D. B. Rasmussen, , T. V. W. Janssens, , B. Temel, , T. Bligaard, , B. Hinnemann, , S. Helveg, , J. Sehested, , J. Catal., 2012, 293, 205 LINK https://doi.org/10.1016/j.jcat.2012.07.001
    [Google Scholar]
  65. S. Gesmanee, , W. Kooamornpattana, , Energy Proc., 2017, 138, 739 LINK https://doi.org/10.1016/j.egypro.2017.10.211
    [Google Scholar]
  66. H. Wan, , Z. Wang, , J. Zhu, , X. Li, , B. Liu, , F. Gao, , L. Dong, , Y. Chen, , Appl. Catal. B: Environ., 2008, 79, (3), 254 LINK https://doi.org/10.1016/j.apcatb.2007.10.025
    [Google Scholar]
  67. M.-F. Luo, , P. Fang, , M. He, , Y.-L. Xie, , J. Mol. Catal. A: Chem., 2005, 239, (1–2), 243 LINK https://doi.org/10.1016/j.molcata.2005.06.029
    [Google Scholar]
  68. P.-O. Larsson, , A. Andersson, , Appl. Catal. B: Environ., 2000, 24, (3–4), 175 LINK https://doi.org/10.1016/s0926-3373(99)00104-6
    [Google Scholar]
  69. K. Chen, , J. Yu, , B. Liu, , C. Si, , H. Ban, , W. Cai, , C. Li, , Z. Li, , K. Fujimoto, , J. Catal., 2019, 372, 163 LINK https://doi.org/10.1016/j.jcat.2019.02.035
    [Google Scholar]
  70. D. Hayes, , S. Alia, , B. Pivovar, , R. Richards, , Chem Catal., 2024, 4, (2), 100905 LINK https://doi.org/10.1016/j.checat.2024.100905
    [Google Scholar]
  71. X. Yan, , Y. Ma, , Y. Zhao, , C. Liu, , H. Nie, , A. He, , Polym. Test., 2023, 129, 108295 LINK https://doi.org/10.1016/j.polymertesting.2023.108295
    [Google Scholar]
  72. J. Seo, , M. I. Khazi, , J.-M. Kim, , Sensors Actuators B: Chem., 2021, 334, 129660 LINK https://doi.org/10.1016/j.snb.2021.129660
    [Google Scholar]
  73. Q. Song, , J. Shen, , Y. Yang, , J. Wang, , Y. Yang, , J. Sun, , B. Jiang, , Z. Liao, , Microporous Mesoporous Mater., 2020, 292, 109755 LINK https://doi.org/10.1016/j.micromeso.2019.109755
    [Google Scholar]
  74. T. Guo, , Q. Guo, , S. Li, , Y. Hu, , S. Yun, , Y. Qian, , J. Catal., 2022, 407, 312 LINK https://doi.org/10.1016/j.jcat.2022.01.035
    [Google Scholar]
  75. X. Liu, , J. Luo, , H. Wang, , L. Huang, , S. Wang, , S. Li, , Z. Sun, , F. Sun, , Z. Jiang, , S. Wei, , W. Li, , J. Lu, , Angew. Chem. Int. Ed., 2022, 61, (23), e202202330 LINK https://doi.org/10.1002/anie.202202330
    [Google Scholar]
  76. X.-L. Hu, , Y.-J. Zhu, , S.-W. Wang, , Mater. Chem. Phys., 2004, 88, (2–3), 421 LINK https://doi.org/10.1016/j.matchemphys.2004.08.010
    [Google Scholar]
  77. X.-R. Zhang, , L.-C. Wang, , Y. Cao, , W.-L. Dai, , H.-Y. He, , K.-N. Fan, , Chem. Commun., 2005, (32), 4104 LINK https://doi.org/10.1039/b502997j
    [Google Scholar]
  78. S. Komarneni, , M. Bruno, , E. Mariani, , Mater. Res. Bull., 2000, 35, (11), 1843 LINK https://doi.org/10.1016/s0025-5408(00)00385-8
    [Google Scholar]
  79. Y. Fernández, , J. A. Menéndez, , A. Arenillas, , E. Fuente, , J. H. Peng, , Z. B. Zhang, , W. Li, , Z. Y. Zhang, , Solid State Ionics, 2009, 180, (26–27), 1372 LINK https://doi.org/10.1016/j.ssi.2009.08.014
    [Google Scholar]
  80. Z. Li, , S. Yan, , H. Fan, , Fuel, 2013, 106, 178 LINK https://doi.org/10.1016/j.fuel.2012.11.003
    [Google Scholar]
  81. A. Kumar, , Y. Kuang, , Z. Liang, , X. Sun, , Mater. Today Nano, 2020, 11, 100076 LINK https://doi.org/10.1016/j.mtnano.2020.100076
    [Google Scholar]
  82. C. A. Zito, , M. O. Orlandi, , D. P. Volanti, , J. Electroceramics, 2018, 40, (4), 271 LINK https://doi.org/10.1007/s10832-018-0128-z
    [Google Scholar]
  83. L.-Y. Meng, , B. Wang, , M.-G. Ma, , K.-L. Lin, , Mater. Today Chem., 2016, 1–2, 63 LINK https://doi.org/10.1016/j.mtchem.2016.11.003
    [Google Scholar]
  84. B. Xie, , P. Kumar, , T. H. Tan, , A. A. Esmailpour, , K.-F. Aguey-Zinsou, , J. Scott, , R. Amal, , ACS Catal., 2021, 11, (9), 5818 LINK https://doi.org/10.1021/acscatal.1c00332
    [Google Scholar]
  85. B. Kniep, , F. Girgsdies, , T. Ressler, , J. Catal., 2005, 236, (1), 34 LINK https://doi.org/10.1016/j.jcat.2005.09.001
    [Google Scholar]
  86. F. Chen, , P. Zhang, , Y. Zeng, , R. Kosol, , L. Xiao, , X. Feng, , J. Li, , G. Liu, , J. Wu, , G. Yang, , Y. Yoneyama, , N. Tsubaki, , Appl. Catal. B: Environ., 2020, 279, 119382 LINK https://doi.org/10.1016/j.apcatb.2020.119382
    [Google Scholar]
  87. S. Lee, , K. Schneider, , J. Schumann, , A. K. Mogalicherla, , P. Pfeifer, , R. Dittmeyer, , Chem. Eng. Sci., 2015, 138, 194 LINK https://doi.org/10.1016/j.ces.2015.08.021
    [Google Scholar]
  88. W. Wang, , Z. Qu, , L. Song, , Q. Fu, , J. Energy Chem., 2020, 40, 22 LINK https://doi.org/10.1016/j.jechem.2019.03.001
    [Google Scholar]
  89. P. Nekvindová, , J. Cajzl, , A. Macková, , P. Malinský, , J. Oswald, , R. Böttger, , R. Yatskiv, , J. Alloys Compd., 2020, 816, 152455 LINK https://doi.org/10.1016/j.jallcom.2019.152455
    [Google Scholar]
  90. M. B. Fichtl, , D. Schlereth, , N. Jacobsen, , I. Kasatkin, , J. Schumann, , M. Behrens, , R. Schlögl, , O. Hinrichsen, , Appl. Catal. A: Gen., 2015, 502, 262 LINK https://doi.org/10.1016/j.apcata.2015.06.014
    [Google Scholar]
  91. C. Bartholomew, , ‘Catalyst Deactivation and Regeneration’, in “Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons Inc, Hoboken, NJ, USA, 2003 LINK https://doi.org/10.1002/0471238961.1415021218150209.a01.pub2
    [Google Scholar]
  92. M. V. Twigg, , M. S. Spencer, , Top. Catal., 2003, 22, 191 LINK https://doi.org/10.1023/A:1023567718303
    [Google Scholar]
  93. P. Forzatti, , L. Lietti, , Catal. Today, 1999, 52, (2–3), 165 LINK https://doi.org/10.1016/s0920-5861(99)00074-7
    [Google Scholar]
  94. H. H. Kung, , Catal. Today, 1992, 11, (4), 443 LINK https://doi.org/10.1016/0920-5861(92)80037-n
    [Google Scholar]
  95. J. T. Sun, , I. S. Metcalfe, , M. Sahibzada, , Ind. Eng. Chem. Res., 1999, 38, (10), 3868 LINK https://doi.org/10.1021/ie990078s
    [Google Scholar]
  96. J. Schumann, , M. Eichelbaum, , T. Lunkenbein, , N. Thomas, , M. C. Álvarez Galván, , R. Schlögl, , M. Behrens, , ACS Catal., 2015, 5, (6), 3260 LINK https://doi.org/10.1021/acscatal.5b00188
    [Google Scholar]
  97. K. Klier, , R. G. Herman, , J. G. Nunan, , K. J. Smith, , C. E. Bogdan, , C.-W. Young, , J. G. Santiesteban, , Studies Surf. Sci. Catal., 1988, 36, 109 LINK https://doi.org/10.1016/s0167-2991(09)60506-1
    [Google Scholar]
  98. A. A. Tsyganenko, , J. Lamotte, , J. Saussey, , J. C. Lavalley, , J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1989, 85, (8), 2397 LINK https://doi.org/10.1039/f19898502397
    [Google Scholar]
  99. G. Hussain, , N. Sheppard, , J. Chem. Soc. Faraday Trans., 1990, 86, (9), 1615 LINK https://doi.org/10.1039/ft9908601615
    [Google Scholar]
  100. J. Howard, , I. J. Braid, , J. Tomkinson, , J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1984, 80, (1), 225 LINK https://doi.org/10.1039/f19848000225
    [Google Scholar]
  101. L. Zhang, , X. Zhang, , K. Qian, , Z. Li, , Y. Cheng, , L. L. Daemen, , Z. Wu, , W. Huang, , J. Energy Chem., 2020, 50, 351 LINK https://doi.org/10.1016/j.jechem.2020.03.038
    [Google Scholar]
  102. M. Al Salmi, , A. Alshammari, , Johnson Matthey Technol. Rev., 2025, 69, (1), in press LINK https://doi.org/10.1595/205651325X17138745351501
    [Google Scholar]
  103. L. Jin, , Y. Wang, , Phys. Chem. Chem. Phys., 2017, 19, (20), 12992 LINK https://doi.org/10.1039/c7cp01715d
    [Google Scholar]
  104. K. B. Karnauskas, , S. L. Miller, , A. C. Schapiro, , GeoHealth, 2020, 4, (5), e2019GH000237 LINK https://doi.org/10.1029/2019GH000237
    [Google Scholar]
/content/journals/10.1595/205651325X17176890228226
Loading
/content/journals/10.1595/205651325X17176890228226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test