Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135
  • oa Tribological Models for Erosive Wear in Slurry Flow: A Review: Part I

    Mechanistic mathematical modelling for accurate slurry erosion prediction

  • Authors: Yogesh Kumar Yadav1, Amar Patnaik2, Akant Kumar Singh3, Rakesh Sehgal1 and Siddhartha1
  • Affiliations: 1 Department of Mechanical Engineering, National Institute of Technology, Hamirpur–177005, Himachal Pradesh, India 2 Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur–302017, Rajasthan, India 3 Department of Mechanical Engineering, Chandigarh University, Mohali-140413, Punjab, India
    *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 3, Jul 2025, p. 394 - 406
  • DOI: https://doi.org/10.1595/205651325X17187104190561
    • Received: 13 Feb 2024
    • Accepted: 17 Jun 2024

Abstract

Slurry erosion is a mechanically induced wear observed in various industries transiting the mixture of liquid and erodent particles, either naturally or affectedly. The equipment and pipelines need frequent monitoring and slurry erosion prediction to check the severity of erosion for implementing preventive measures to minimise the damage of erosion wear. Experimental investigation and online condition monitoring are very high priced and provide a fair idea about the extent of slurry erosion wear; nevertheless, precise prediction of slurry erosion wear requires operating conditions. To minimise expenditure on slurry erosion testing or monitoring and accurate slurry erosion prediction, tribological modelling of slurry erosion wear by mathematical approach or computer-based simulations has proved to be an excellent approach by numerous researchers to foresee the slurry erosion wear and control its severity. Several authors in the past have aligned their efforts in this direction. This two-part review is an attempt to estimate the progress in the variety of tribological modelling (primarily mathematical models) of slurry erosion for its forecasting, monitoring and to suggest the apt approach for the modelling of slurry erosion wear, especially for hydroturbine components. This article covers the research studies pertaining to mathematical wear models for solid particle erosion recommending a commencing approach for slurry erosion wear modelling.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17187104190561
2025-07-01
2025-05-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Yadav_13a_Imp-Pt1.html?itemId=/content/journals/10.1595/205651325X17187104190561&mimeType=html&fmt=ahah

References

  1. Y. K. Yadav, A. K. Singh, Siddhartha, Proc. Inst. Mech. Eng. Part L, 2022, 237, (1), 3 LINK https://doi.org/10.1177/14644207221108565
    [Google Scholar]
  2. H. C. Meng, K. C. Ludema, Wear, 1995, 181–183, (2), 443 LINK https://doi.org/10.1016/0043-1648(95)90158-2
    [Google Scholar]
  3. C. Huang, S. Chiovelli, P. Minev, J. Luo, K. Nandakumar, Powder Technol., 2008, 187, (3), 273 LINK https://doi.org/10.1016/j.powtec.2008.03.003
    [Google Scholar]
  4. K. K. Wong, H. M. Clark, Wear, 1993, 160, (1), 95 LINK https://doi.org/10.1016/0043-1648(93)90409-f
    [Google Scholar]
  5. I. Finnie, Wear, 1972, 19, (1), 81 LINK https://doi.org/10.1016/0043-1648(72)90444-9
    [Google Scholar]
  6. C. Huang, P. Minev, J. Luo, K. Nandakumar, Wear, 2010, 269, (3–4), 190 LINK https://doi.org/10.1016/j.wear.2010.03.002
    [Google Scholar]
  7. G. L. Sheldon, I. Finnie, J. Eng. Ind., 1966, 88, (4), 393 LINK https://doi.org/10.1115/1.3672667
    [Google Scholar]
  8. G. L. Sheldon, A. Kanhere, Wear, 1972, 21, (1), 195 LINK https://doi.org/10.1016/0043-1648(72)90257-8
    [Google Scholar]
  9. A. G. Evans, M. E. Gulden, M. Rosenblatt, Proc. R. Soc. Lond. A, 1978, 361, (1706), 343 LINK https://doi.org/10.1098/rspa.1978.0106
    [Google Scholar]
  10. I. M. Hutchings, Wear, 1981, 70, (3), 269 LINK https://doi.org/10.1016/0043-1648(81)90347-1
    [Google Scholar]
  11. M. Hashish, ‘Modified Model for Erosion’, in “Proceedings of the Seventh International Conference on Erosion by Liquid and Solid Impact”, 7th–10th September, 1987, Robinson College, Cambridge, UK, ed. J. E. Field, University of Cambridge Press, Cambridge, UK, 1987, pp. 461480
    [Google Scholar]
  12. A. Forder, M. Thew, D. Harrison, Wear, 1998, 216, (2), 184 LINK https://doi.org/10.1016/s0043-1648(97)00217-2
    [Google Scholar]
  13. I. Finnie, Wear, 1960, 3, (2), 87 LINK https://doi.org/10.1016/0043-1648(60)90055-7
    [Google Scholar]
  14. K. Bergevin, “Effect of Slurry Velocity on the Mechanical and Electro-Chemical Components of Erosion-Corrosion in Vertical Pipes,” Masters Thesis, University of Saskatchewan, Saskatoon, Canada, 1984
  15. S. Nešić, “Computation of Localized Erosion-Corrosion in Disturbed Two-Phase Flow”, PhD Thesis, University of Saskatchewan, Saskatoon, Canada, 1991
  16. G. P. Tilly, Wear, 1973, 23, (1), 87 LINK https://doi.org/10.1016/0043-1648(73)90044-6
    [Google Scholar]
  17. H. S. Grewal, H. Singh, A. Agrawal, Tribol. Lett., 2014, 56, 119 LINK https://doi.org/10.1007/s11249-014-0391-3
    [Google Scholar]
  18. J. G. A. Bitter, Wear, 1963, 6, (1), 5 LINK https://doi.org/10.1016/0043-1648(63)90003-6
    [Google Scholar]
  19. J. G. A. Bitter, Wear, 1963, 6, (3), 169 LINK https://doi.org/10.1016/0043-1648(63)90073-5
    [Google Scholar]
  20. J. H. Neilson, A. Gilchrist, Wear, 1968, 11, (2), 111 LINK https://doi.org/10.1016/0043-1648(68)90591-7
    [Google Scholar]
  21. M.-H. Wang, C. Huang, K. Nandakumar, P. Minev, J. Luo, S. Chiovelli, Int. J. Comp. Fluid Dyn., 2009, 23, (2), 155 LINK https://doi.org/10.1080/10618560902744412
    [Google Scholar]
  22. H. S. Grewal, A. Agrawal, H. Singh, Tribol. Int., 2013, 66, 296 LINK https://doi.org/10.1016/j.triboint.2013.06.010
    [Google Scholar]
  23. H. S. Grewal, A. Agrawal, H. Singh, H. S. Arora, ‘Development of Novel Mathematical Models for Slurry Erosion Prediction,’ in 3rd Asian Conference on Mechanics of Functional Materials and Structures, Indian Institute of Technology Delhi, New Delhi, India, 5th–8th December, 2012
    [Google Scholar]
  24. G. Grant, W. Tabakoff, ‘An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy’, AD-764 267, National Technical Information Service US Department of Commerce, Springfield, USA, June, 1973
  25. G. R. Desale, B. K. Gandhi, S. C. Jain, Wear, 2008, 264, (3–4), 322 LINK https://doi.org/10.1016/j.wear.2007.03.022
    [Google Scholar]
  26. G. R. Desale, B. K. Gandhi, S. C. Jain, J. Tribol., 2011, 133, (3), 031603 LINK https://doi.org/10.1115/1.4004342
    [Google Scholar]
  27. M. S. Patil, E. R. Deore, R. S. Jahagirdar, S. V. Patil, ‘Study of the Parameters Affecting Erosion Wear of Ductile Material in Solid-Liquid Mixture’, in “Proceedings of the World Congress on Engineering”, 6th–8th July, 2011, London, UK, Vol. 3, International Association of Engineers, Hong Kong, China, 2011, pp. 21592163 LINK https://www.iaeng.org/publication/WCE2011/WCE2011_pp2159-2163.pdf
    [Google Scholar]
  28. M. A. Hassan, M. A. El-Sharief, A. Aboul-Kasem, S. Ramesh, J. Purbolaksono, Mater. Des., 2012, 39, 186 LINK https://doi.org/10.1016/j.matdes.2012.02.012
    [Google Scholar]
  29. A. Patnaik, A. Satapathy, S. S. Mahapatra, R. R. Dash, J. Polym. Res., 2008, 15, (2), 147 LINK https://doi.org/10.1007/s10965-007-9154-2
    [Google Scholar]
  30. H. S. Grewal, H. S. Arora, A. Agrawal, H. Singh, S. Mukherjee, Procedia Eng., 2013, 68, 484 LINK https://doi.org/10.1016/j.proeng.2013.12.210
    [Google Scholar]
  31. H. S. Grewal, A. Agrawal, H. Singh, Tribol. Lett., 2013, 52, (2), 287 LINK https://doi.org/10.1007/s11249-013-0213-z
    [Google Scholar]
  32. H. S. Grewal, A. Agrawal, H. Singh, B. A. Shollock, J. Therm. Spray Technol., 2013, 23, (3), 389 LINK https://doi.org/10.1007/s11666-013-0013-x
    [Google Scholar]
  33. H. S. Grewal, H. S. Arora, H. Singh, A. Agrawal, S. Mukherjee, J. Tribol., 2014, 136, (4), 041102 LINK https://doi.org/10.1115/1.4027622
    [Google Scholar]
  34. S. Biswas, A. Satapathy, Mater. Des., 2009, 30, (8), 2841 LINK https://doi.org/10.1016/j.matdes.2009.01.018
    [Google Scholar]
  35. Siddhartha, R. Bisht, Mater. Des., 2013, 47, 395 LINK https://doi.org/10.1016/j.matdes.2012.11.037
    [Google Scholar]
  36. Y. K. Yadav, R. Sehgal, Siddhartha, Tribol. Int., 2024, 191, 109133 LINK https://doi.org/10.1016/j.triboint.2023.109133
    [Google Scholar]
  37. E. H. Coker, D. Van Peursem, Wear, 2018, 400–401, 74 LINK https://doi.org/10.1016/j.wear.2017.12.022
    [Google Scholar]
  38. C. Syamsundar, D. Chatterjee, M. Kamaraj, Trans. Indian Inst. Met., 2015, 68, (4), 587 LINK https://doi.org/10.1007/s12666-014-0489-1
    [Google Scholar]
  39. V. Batalović, J. Tribol., 2010, 132, (2), 021602 LINK https://doi.org/10.1115/1.4001167
    [Google Scholar]
  40. K. Murugan, S. Karthikeyan, JAC J. Compos. Theory, 2018, 11, (10), 63
    [Google Scholar]
  41. A. A. Noon, M.-H. Kim, Wear, 2016, 364–365, 103 LINK https://doi.org/10.1016/j.wear.2016.07.005
    [Google Scholar]
  42. R. K. Kumar, M. Kamaraj, S. Seetharamu, S. A. Kumar, Mater. Des., 2017, 132, 79 LINK https://doi.org/10.1016/j.matdes.2017.06.046
    [Google Scholar]
  43. J. K. Edwards, B. S. McLaury, S. A. Shirazi, J. Energy Resour. Technol., 2001, 123, (4), 277 LINK https://doi.org/10.1115/1.1413773
    [Google Scholar]
  44. A. Elkholy, Wear, 1983, 84, (1), 39 LINK https://doi.org/10.1016/0043-1648(83)90117-5
    [Google Scholar]
  45. R. Gupta, S. N. Singh, V. Sehadri, Wear, 1995, 184, (2), 169 LINK https://doi.org/10.1016/0043-1648(94)06566-7
    [Google Scholar]
  46. B. K. Gandhi, S. N. Singh, V. Seshadri, Tribol. Int., 1999, 32, (5), 275 LINK https://doi.org/10.1016/s0301-679x(99)00047-x
    [Google Scholar]
  47. C. S. Ramachandran, V. Balasubramanian, R. Varahamoorthy, Met. Mater. Int., 2010, 16, (2), 235 LINK https://doi.org/10.1007/s12540-010-0412-1
    [Google Scholar]
  48. R. Tarodiya, B. K. Gandhi, J. Tribol., 2019, 141, (9), 091602 LINK https://doi.org/10.1115/1.4043903
    [Google Scholar]
  49. A. Abouel-Kasem, J. Tribol., 2011, 133, (1), 014502 LINK https://doi.org/10.1115/1.4002605
    [Google Scholar]
  50. M. K. Padhy, R. P. Saini, Energy, 2011, 36, (1), 141 LINK https://doi.org/10.1016/j.energy.2010.10.060
    [Google Scholar]
  51. A. G. Joshi, M. P. Kumar, S. Basavarajappa, Proc. Mater. Sci., 2014, 5, 863 LINK https://doi.org/10.1016/j.mspro.2014.07.372
    [Google Scholar]
  52. S. Khurana, A. Kumar Varun, Int. J. Ambient Energy, 2016, 37, (5), 520 LINK https://doi.org/10.1080/01430750.2015.1023831
    [Google Scholar]
  53. A. Rawat, S. N. Singh, V. Seshadri, Wear, 2017, 378–379, 114 LINK https://doi.org/10.1016/j.wear.2017.02.039
    [Google Scholar]
  54. V. Mahesh, S. Joladarashi, S. M. Kulkarni, AIP Conf. Proc., 2020, 2204, (1), 040033 LINK https://doi.org/10.1063/1.5141606
    [Google Scholar]
  55. O. Abdelaal, M. Heshmat, Y. Abdelrhman, Tribol. Int., 2020, 151, 106410 LINK https://doi.org/10.1016/j.triboint.2020.106410
    [Google Scholar]
  56. Q. B. Nguyen, C. Y. H. Lim, V. B. Nguyen, Y. M. Wan, B. Nai, Y. W. Zhang, M. Gupta, Tribol. Int., 2014, 79, 1 LINK https://doi.org/10.1016/j.triboint.2014.05.014
    [Google Scholar]
  57. D. K. Goyal, H. Singh, H. Kumar, V. Sahni, J. Therm. Spray Technol., 2012, 21, (5), 838 LINK https://doi.org/10.1007/s11666-012-9795-5
    [Google Scholar]
  58. D. K. Goyal, H. Singh, H. Kumar, V. Sahni, Wear, 2012, 289, 46 LINK https://doi.org/10.1016/j.wear.2012.04.016
    [Google Scholar]
  59. S. Bhandari, H. Singh, H. K. Kansal, V. Rastogi, Tribol. Lett., 2012, 45, (2), 319 LINK https://doi.org/10.1007/s11249-011-9891-6
    [Google Scholar]
  60. S. Bhandari, H. Singh, H. Kumar, V. Rastogi, J. Therm. Spray Technol., 2012, 21, (5), 1054 LINK https://doi.org/10.1007/s11666-012-9799-1
    [Google Scholar]
  61. D. K. Goyal, H. Singh, H. Kumar, V. Sahni, J. Tribol., 2014, 136, (4), 041602 LINK https://doi.org/10.1115/1.4027621
    [Google Scholar]
  62. D. K. Goyal, H. Singh, H. Kumar, J. Therm. Spray Technol., 2019, 28, (7), 1363 LINK https://doi.org/10.1007/s11666-019-00897-7
    [Google Scholar]
  63. R. Kumar, S. Bhandari, A. Goyal, J. Therm. Spray Technol., 2017, 26, (6), 1279 LINK https://doi.org/10.1007/s11666-017-0598-6
    [Google Scholar]
  64. V. Sharma, M. Kaur, S. Bhandari, Wear, 2020, 462–463, 203498 LINK https://doi.org/10.1016/j.wear.2020.203498
    [Google Scholar]
  65. A. K. Rai, A. Kumar, T. Staubli, Renew. Energy, 2020, 145, 893 LINK https://doi.org/10.1016/j.renene.2019.06.012
    [Google Scholar]
  66. M. Sharma, D. K. Goyal, G. Kaushal, Mater. Today Proc., 2020, 24, (2), 869 LINK https://doi.org/10.1016/j.matpr.2020.04.397
    [Google Scholar]
  67. A. M. Hebbale, R. I. Badiger, M. S. Srinath, G. M. Naik, Metallogr. Microstruct. Anal., 2020, 9, (3), 293 LINK https://doi.org/10.1007/s13632-020-00644-3
    [Google Scholar]
  68. C. S. Ramachandran, V. Balasubramanian, R. Varahamoorthy, S. Babu, Surf. Eng., 2009, 25, (6), 449
    [Google Scholar]
  69. M. Heshmat, Y. Abdelrhman, Int. J. Mater. Eng. Innov., 2020, 11, (3), 198 LINK https://doi.org/10.1504/ijmatei.2020.108881
    [Google Scholar]
  70. B. E. Naveena, R. Keshavamurthy, N. Sekhar, Surf. Eng., 2017, 33, (12), 925 LINK https://doi.org/10.1080/02670844.2017.1288341
    [Google Scholar]
  71. G. A. Ludwig, C. F. Malfatti, R. M. Schroeder, V. Z. Ferrari, I. L. Muller, Surf. Coatings Technol., 2019, 377, 124918 LINK https://doi.org/10.1016/j.surfcoat.2019.124918
    [Google Scholar]
  72. Y. K. Yadav, A. Patnaik, A. K. Singh, R. Sehgal, Siddhartha, Johnson Matthey Technol. Rev., 2025, 69, (3), 407 LINK https://doi.org/10.1595/205651325X17441898052804
    [Google Scholar]
/content/journals/10.1595/205651325X17187104190561
Loading
/content/journals/10.1595/205651325X17187104190561
Loading

Data & Media loading...

Supplements

  • Article Type: Review Article
Keyword(s): mathematical modelling; slurry erosion; solid particle erosion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test