Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135

Abstract

This review is focused on ‘frustrated Lewis pair’ (FLP) hydrogenations. Following a discussion of the conceptual discovery and initial efforts to exploit the finding for metal-free hydrogenations, the scope of substrates that are susceptible to FLP hydrogenations are considered. The further advancement of FLPs to enantioselective reductions are discussed. Applications of the concept in transfer hydrogenation, and the reductions of carbon dioxide and main group substrates are also presented. Finally, the utility of the concept of FLPs in several heterogeneous catalysis systems is considered. The review concludes with an outlook for the future of FLP reductions.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17313449269327
2025-07-01
2025-05-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Stephan_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17313449269327&mimeType=html&fmt=ahah

References

  1. P. Sabatier, J.-B. Senderens, Compt. Rendus, 1897, 124, 616
    [Google Scholar]
  2. D. Evans, J. A. Osborn, F. H. Jardine, G. Wilkinson, Nature, 1965, 208, (5016), 1203 LINK https://doi.org/10.1038/2081203b0
    [Google Scholar]
  3. W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, (12), 1998 LINK https://doi.org/10.1002/1521-3773(20020617)41:12%3C1998::AID-ANIE1998%3E3.0.CO;2-8
    [Google Scholar]
  4. R. Noyori, Angew. Chem. Int. Ed., 2002, 41, (12), 2008 LINK https://doi.org/10.1002/1521-3773(20020617)41:12%3C2008::AID-ANIE2008%3E3.0.CO;2-4
    [Google Scholar]
  5. L. Cabrera, G. C. Welch, J. D. Masuda, P. Wei, D. W. Stephan, Inorg. Chim. Acta, 2006, 359, (9), 3066 LINK https://doi.org/10.1016/j.ica.2006.02.006
    [Google Scholar]
  6. G. C. Welch, D. W. Stephan, J. Am. Chem. Soc., 2007, 129, (7), 1880 LINK https://doi.org/10.1021/ja067961j
    [Google Scholar]
  7. D. W. Stephan, Chem, 2018, 4, (11), 2483 LINK https://doi.org/10.1016/j.chempr.2018.09.008
    [Google Scholar]
  8. D. W. Stephan, Science, 2016, 354, (6317), aaf7229 LINK https://doi.org/10.1126/science.aaf7229
    [Google Scholar]
  9. D. W. Stephan, G. Erker, Angew. Chem. Int. Ed., 2015, 54, (22), 6400 LINK https://doi.org/10.1002/anie.201409800
    [Google Scholar]
  10. D. W. Stephan, J. Am. Chem. Soc., 2015, 137, (32), 10018 LINK https://doi.org/10.1021/jacs.5b06794
    [Google Scholar]
  11. D. W. Stephan, G. Erker, Angew. Chem. Int. Ed., 2010, 49, (1), 46 LINK https://doi.org/10.1002/anie.200903708
    [Google Scholar]
  12. J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan, Chem. Soc. Rev., 2019, 48, (13), 3592 LINK https://doi.org/10.1039/c8cs00277k
    [Google Scholar]
  13. W. Meng, X. Feng, H. Du, Chinese J. Chem., 2020, 38, (6), 625 LINK https://doi.org/10.1002/cjoc.202000011
    [Google Scholar]
  14. P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed., 2007, 46, (42), 8050 LINK https://doi.org/10.1002/anie.200702908
    [Google Scholar]
  15. P. A. Chase, T. Jurca, D. W. Stephan, Chem. Commun., 2008, (14), 1701 LINK https://doi.org/10.1039/b718598g
    [Google Scholar]
  16. P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich, G. Erker, Angew. Chem. Int. Ed., 2008, 47, (39), 7543 LINK https://doi.org/10.1002/anie.200801432
    [Google Scholar]
  17. D. Chen, J. Klankermayer, Chem. Commun., 2008, (18), 2130 LINK https://doi.org/10.1039/b801806e
    [Google Scholar]
  18. H. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun., 2008, (45), 5966 LINK https://doi.org/10.1039/b813286k
    [Google Scholar]
  19. G. Erős, H. Mehdi, I. Pápai, T. A. Rokob, P. Király, G. Tárkányi, T. Soós, Angew. Chem. Int. Ed., 2010, 49, (37), 6559 LINK https://doi.org/10.1002/anie.201001518
    [Google Scholar]
  20. G. Erős, K. Nagy, H. Mehdi, I. Pápai, P. Nagy, P. Király, G. Tárkányi, T. Soós, Chem. Eur. J., 2012, 18, (2), 574 LINK https://doi.org/10.1002/chem.201102438
    [Google Scholar]
  21. É. Dorkó, M. Szabó, B. Kótai, I. Pápai, A. Domján, T. Soós, Angew. Chem. Int. Ed., 2017, 56, (32), 9512 LINK https://doi.org/10.1002/anie.201703591
    [Google Scholar]
  22. É. Dorkó, B. Kótai, T. Földes, Á. Gyömöre, I. Pápai, T. Soós, J. Organomet. Chem., 2017, 847, 258 LINK https://doi.org/10.1016/j.jorganchem.2017.04.031
    [Google Scholar]
  23. D. J. Scott, M. J. Fuchter, A. E. Ashley, Angew. Chem. Int. Ed., 2014, 53, (38), 10218 LINK https://doi.org/10.1002/anie.201405531
    [Google Scholar]
  24. D. W. Stephan, S. Greenberg, T. W. Graham, P. Chase, J. J. Hastie, S. J. Geier, J. M. Farrell, C. C. Brown, Z. M. Heiden, G. C. Welch, M. Ullrich, Inorg. Chem., 2011, 50, (24), 12338 LINK https://doi.org/10.1021/ic200663v
    [Google Scholar]
  25. S. J. Geier, P. A. Chase, D. W. Stephan, Chem. Commun., 2010, 46, (27), 4884 LINK https://doi.org/10.1039/c0cc00719f
    [Google Scholar]
  26. T. Mahdi, J. N. del Castillo, D. W. Stephan, Organometallics, 2013, 32, (6), 1971 LINK https://doi.org/10.1021/om4000727
    [Google Scholar]
  27. J. Mohr, M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, (48), 13278 LINK https://doi.org/10.1002/anie.201407324
    [Google Scholar]
  28. I. Khan, M. Manzotti, G. J. Tizzard, S. J. Coles, R. L. Melen, L. C. Morrill, ACS Catal., 2017, 7, (11), 7748 LINK https://doi.org/10.1021/acscatal.7b03077
    [Google Scholar]
  29. N. A. Sitte, M. Bursch, S. Grimme, J. Paradies, J. Am. Chem. Soc., 2019, 141, (1), 159 LINK https://doi.org/10.1021/jacs.8b12997
    [Google Scholar]
  30. L. Köring, N. A. Sitte, M. Bursch, S. Grimme, J. Paradies, Chem. Eur. J., 2021, 27, (57), 14179 LINK https://doi.org/10.1002/chem.202100041
    [Google Scholar]
  31. Z. Jian, S. Krupski, K. Škoch, G. Kehr, C. G. Daniliuc, I. Císařová, P. Štěpnička, G. Erker, Organometallics, 2017, 36, (15), 2940 LINK https://doi.org/10.1021/acs.organomet.7b00363
    [Google Scholar]
  32. L.-M. Elmer, G. Kehr, C. G. Daniliuc, M. Siedow, H. Eckert, M. Tesch, A. Studer, K. Williams, T. H. Warren, G. Erker, Chem. Eur. J., 2017, 23, (25), 6056 LINK https://doi.org/10.1002/chem.201603954
    [Google Scholar]
  33. T. Özgün, K.-Y. Ye, C. G. Daniliuc, B. Wibbeling, L. Liu, S. Grimme, G. Kehr, G. Erker, Chem. Eur. J., 2016, 22, (17), 5988 LINK https://doi.org/10.1002/chem.201505200
    [Google Scholar]
  34. A. Feldmann, G. Kehr, C. G. Daniliuc, C. Mück-Lichtenfeld, G. Erker, Chem. Eur. J., 2015, 21, (35), 12456 LINK https://doi.org/10.1002/chem.201502278
    [Google Scholar]
  35. C. Rosorius, J. Möricke, B. Wibbeling, A. C. McQuilken, T. H. Warren, C. G. Daniliuc, G. Kehr, G. Erker, Chem. Eur. J., 2016, 22, (3), 1103 LINK https://doi.org/10.1002/chem.201502493
    [Google Scholar]
  36. J. M. Farrell, R. T. Posaratnanathan, D. W. Stephan, Chem. Sci., 2015, 6, (3), 2010 LINK https://doi.org/10.1039/c4sc03675a
    [Google Scholar]
  37. J. M. Farrell, J. A. Hatnean, D. W. Stephan, J. Am. Chem. Soc., 2012, 134, (38), 15728 LINK https://doi.org/10.1021/ja307995f
    [Google Scholar]
  38. P. Eisenberger, B. P. Bestvater, E. C. Keske, C. M. Crudden, Angew. Chem. Int. Ed., 2015, 54, (8), 2467 LINK https://doi.org/10.1002/anie.201409250
    [Google Scholar]
  39. J. S. Reddy, B.-H. Xu, T. Mahdi, R. Fröhlich, G. Kehr, D. W. Stephan, G. Erker, Organometallics, 2012, 31, (15), 5638 LINK https://doi.org/10.1021/om3006068
    [Google Scholar]
  40. S. Tamke, C.-G. Daniliuc, J. Paradies, Org. Biomol. Chem., 2014, 12, (45), 9139 LINK https://doi.org/10.1039/c4ob01346h
    [Google Scholar]
  41. L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed., 2012, 51, (40), 10164 LINK https://doi.org/10.1002/anie.201204007
    [Google Scholar]
  42. B. Inés, D. Palomas, S. Holle, S. Steinberg, J. A. Nicasio, M. Alcarazo, Angew. Chem. Int. Ed., 2012, 51, (49), 12367 LINK https://doi.org/10.1002/anie.201205348
    [Google Scholar]
  43. L. Greb, C.-G. Daniliuc, K. Bergander, J. Paradies, Angew. Chem. Int. Ed., 2013, 52, (22), 5876 LINK https://doi.org/10.1002/anie.201210175
    [Google Scholar]
  44. K. Chernichenko, Á. Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, Nature Chem., 2013, 5, (8), 718 LINK https://doi.org/10.1038/nchem.1693
    [Google Scholar]
  45. K. Chernichenko, B. Kótai, M. Nieger, S. Heikkinen, I. Pápai, T. Repo, Dalton Trans., 2017, 46, (7), 2263 LINK https://doi.org/10.1039/c6dt04649e
    [Google Scholar]
  46. Y. Liu, L. Hu, H. Chen, H. Du, Chem. Eur. J., 2015, 21, (8), 3495 LINK https://doi.org/10.1002/chem.201405388
    [Google Scholar]
  47. U. Gellrich, Angew. Chem. Int. Ed., 2018, 57, (17), 4779 LINK https://doi.org/10.1002/anie.201713119
    [Google Scholar]
  48. F. Wech, M. Hasenbeck, U. Gellrich, Chem. Eur. J., 2020, 26, (59), 13445 LINK https://doi.org/10.1002/chem.202001276
    [Google Scholar]
  49. Y. Segawa, D. W. Stephan, Chem. Commun., 2012, 48, (98), 11963 LINK https://doi.org/10.1039/c2cc37190a
    [Google Scholar]
  50. T. Mahdi, Z. M. Heiden, S. Grimme, D. W. Stephan, J. Am. Chem. Soc., 2012, 134, (9), 4088 LINK https://doi.org/10.1021/ja300228a
    [Google Scholar]
  51. T. Mahdi, D. W. Stephan, J. Am. Chem. Soc., 2014, 136, (45), 15809 LINK https://doi.org/10.1021/ja508829x
    [Google Scholar]
  52. D. J. Scott, M. J. Fuchter, A. E. Ashley, J. Am. Chem. Soc., 2014, 136, (45), 15813 LINK https://doi.org/10.1021/ja5088979
    [Google Scholar]
  53. M. Bakos, Á. Gyömöre, A. Domján, T. Soós, Angew. Chem. Int. Ed., 2017, 56, (19), 5217 LINK https://doi.org/10.1002/anie.201700231
    [Google Scholar]
  54. S. Tussing, L. Greb, S. Tamke, B. Schirmer, C. Muhle-Goll, B. Luy, J. Paradies, Chem. Eur. J., 2015, 21, (22), 8056 LINK https://doi.org/10.1002/chem.201500805
    [Google Scholar]
  55. J. A. Nicasio, S. Steinberg, B. Inés, M. Alcarazo, Chem. Eur. J., 2013, 19, (33), 11016 LINK https://doi.org/10.1002/chem.201301158
    [Google Scholar]
  56. S. Das, S. K. Pati, Chem. Eur. J., 2017, 23, (5), 1078 LINK https://doi.org/10.1002/chem.201602774
    [Google Scholar]
  57. G. Ménard, D. W. Stephan, Angew. Chem. Int. Ed., 2012, 51, (33), 8272 LINK https://doi.org/10.1002/anie.201203362
    [Google Scholar]
  58. M. Xu, J. Possart, A. E. Waked, J. Roy, W. Uhl, D. W. Stephan, Phil. Trans. R. Soc. A., 2017, 375, (2101), 20170014 LINK https://doi.org/10.1098/rsta.2017.0014
    [Google Scholar]
  59. J. A. Hatnean, J. W. Thomson, P. A. Chase, D. W. Stephan, Chem. Commun., 2014, 50, (3), 301 LINK https://doi.org/10.1039/c3cc47889k
    [Google Scholar]
  60. A. Friedrich, J. Eyselein, H. Elsen, J. Langer, J. Pahl, M. Weisinger, S. Harder, Chem. Eur. J., 2021, 27, (28), 7756 LINK https://doi.org/10.1002/chem.202100641
    [Google Scholar]
  61. E. R. Clark, M. J. Ingleson, Angew. Chem. Int. Ed., 2014, 53, (42), 11306 LINK https://doi.org/10.1002/anie.201406122
    [Google Scholar]
  62. M. P. Boone, D. W. Stephan, J. Am. Chem. Soc., 2013, 135, (23), 8508 LINK https://doi.org/10.1021/ja403912n
    [Google Scholar]
  63. D. J. Scott, N. A. Phillips, J. S. Sapsford, A. C. Deacy, M. J. Fuchter, A. E. Ashley, Angew. Chem. Int. Ed., 2016, 55, (47), 14738 LINK https://doi.org/10.1002/anie.201606639
    [Google Scholar]
  64. L. J. Hounjet, C. B. Caputo, D. W. Stephan, Dalton Trans., 2013, 42, (7), 2629 LINK https://doi.org/10.1039/c2dt32711b
    [Google Scholar]
  65. C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science, 2013, 341, (6152), 1374 LINK https://doi.org/10.1126/science.1241764
    [Google Scholar]
  66. T. vom Stein, M. Peréz, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo, D. W. Stephan, Angew. Chem. Int. Ed., 2015, 54, (35), 10178 LINK https://doi.org/10.1002/anie.201504109
    [Google Scholar]
  67. L. H. Slaugh, Tetrahedron, 1966, 22, (6), 1741 LINK https://doi.org/10.1016/s0040-4020(01)82245-6
    [Google Scholar]
  68. L. H. Slaugh, J. Org. Chem., 1967, 32, (1), 108 LINK https://doi.org/10.1021/jo01277a028
    [Google Scholar]
  69. A. Berkessel, T. J. S. Schubert, T. N. Müller, J. Am. Chem. Soc., 2002, 124, (29), 8693 LINK https://doi.org/10.1021/ja016152r
    [Google Scholar]
  70. D. C. Elliott, A. Marti, P. Mauleón, A. Pfaltz, Chem. Eur. J., 2019, 25, (8), 1918 LINK https://doi.org/10.1002/chem.201805549
    [Google Scholar]
  71. D. T. Hog, M. Oestreich, Eur. J. Org. Chem., 2009, 2009, (29), 5047 LINK https://doi.org/10.1002/ejoc.200900796
    [Google Scholar]
  72. D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics, 1998, 17, (25), 5492 LINK https://doi.org/10.1021/om980673e
    [Google Scholar]
  73. D. Chen, Y. Wang, J. Klankermayer, Angew. Chem. Int. Ed., 2010, 49, (49), 9475 LINK https://doi.org/10.1002/anie.201004525
    [Google Scholar]
  74. D. Chen, V. Leich, F. Pan, J. Klankermayer, Chem. Eur. J., 2012, 18, (17), 5184 LINK https://doi.org/10.1002/chem.201200244
    [Google Scholar]
  75. G. Ghattas, D. Chen, F. Pan, J. Klankermayer, Dalton Trans., 2012, 41, (30), 9026 LINK https://doi.org/10.1039/c2dt30536d
    [Google Scholar]
  76. M. Lindqvist, K. Axenov, M. Nieger, M. Räisänen, M. Leskelä, T. Repo, Chem. Eur. J., 2013, 19, (31), 10412 LINK https://doi.org/10.1002/chem.201300462
    [Google Scholar]
  77. V. Sumerin, K. Chernichenko, M. Nieger, M. Leskelä, B. Rieger, T. Repo, Adv. Synth. Catal., 2011, 353, (11–12), 2093 LINK https://doi.org/10.1002/adsc.201100206
    [Google Scholar]
  78. X. Wang, G. Kehr, C. G. Daniliuc, G. Erker, J. Am. Chem. Soc., 2014, 136, (8), 3293 LINK https://doi.org/10.1021/ja413060u
    [Google Scholar]
  79. K.-Y. Ye, X. Wang, C. G. Daniliuc, G. Kehr, G. Erker, Eur. J. Inorg. Chem., 2017, 2017, (2), 368 LINK https://doi.org/10.1002/ejic.201600834
    [Google Scholar]
  80. J. Lam, B. A. R. Günther, J. M. Farrell, P. Eisenberger, B. P. Bestvater, P. D. Newman, R. L. Melen, C. M. Crudden, D. W. Stephan, Dalton Trans., 2016, 45, (39), 15303 LINK https://doi.org/10.1039/c6dt02202b
    [Google Scholar]
  81. Y. Liu, H. Du, J. Am. Chem. Soc., 2013, 135, (18), 6810 LINK https://doi.org/10.1021/ja4025808
    [Google Scholar]
  82. X. Liu, T. Liu, W. Meng, H. Du, Org. Biomol. Chem., 2018, 16, (45), 8686 LINK https://doi.org/10.1039/c8ob02446d
    [Google Scholar]
  83. S. Wei, H. Du, J. Am. Chem. Soc., 2014, 136, (35), 12261 LINK https://doi.org/10.1021/ja507536n
    [Google Scholar]
  84. X. Ren, G. Li, S. Wei, H. Du, Org. Lett., 2015, 17, (4), 990 LINK https://doi.org/10.1021/acs.orglett.5b00085
    [Google Scholar]
  85. Z. Zhang, H. Du, Angew. Chem. Int. Ed., 2015, 54, (2), 623 LINK https://doi.org/10.1002/anie.201409471
    [Google Scholar]
  86. Z. Zhang, H. Du, Org. Lett., 2015, 17, (24), 6266 LINK https://doi.org/10.1021/acs.orglett.5b03307
    [Google Scholar]
  87. Z. Zhang, H. Du, Org. Lett., 2015, 17, (11), 2816 LINK https://doi.org/10.1021/acs.orglett.5b01240
    [Google Scholar]
  88. S. Wei, X. Feng, H. Du, Org. Biomol. Chem., 2016, 14, (34), 8026 LINK https://doi.org/10.1039/c6ob01556e
    [Google Scholar]
  89. X. Zhu, H. Du, Org. Lett., 2015, 17, (12), 3106 LINK https://doi.org/10.1021/acs.orglett.5b01380
    [Google Scholar]
  90. X.-S. Tu, N.-N. Zeng, R.-Y. Li, Y.-Q. Zhao, D.-Z. Xie, Q. Peng, X.-C. Wang, Angew. Chem. Int. Ed., 2018, 57, (46), 15096 LINK https://doi.org/10.1002/anie.201808289
    [Google Scholar]
  91. X. Li, J.-J. Tian, N. Liu, X.-S. Tu, N.-N. Zeng, X.-C. Wang, Angew. Chem. Int. Ed., 2019, 58, (14), 4664 LINK https://doi.org/10.1002/anie.201900907
    [Google Scholar]
  92. B. Gao, X. Feng, W. Meng, H. Du, Angew. Chem. Int. Ed., 2020, 59, (11), 4498 LINK https://doi.org/10.1002/anie.201914568
    [Google Scholar]
  93. F. Focante, P. Mercandelli, A. Sironi, L. Resconi, Coord. Chem. Rev., 2006, 250, (1–2), 170 LINK https://doi.org/10.1016/j.ccr.2005.05.005
    [Google Scholar]
  94. G. Kehr, R. Roesmann, R. Fröhlich, C. Holst, G. Erker, Eur. J. Inorg. Chem., 2001, 2001, (2), 535 LINK https://doi.org/10.1002/1099-0682(200102)2001:2<535::aid-ejic535>3.0.co;2-6
    [Google Scholar]
  95. J. M. Farrell, Z. M. Heiden, D. W. Stephan, Organometallics, 2011, 30, (17), 4497 LINK https://doi.org/10.1021/om2005832
    [Google Scholar]
  96. I. Chatterjee, M. Oestreich, Angew. Chem. Int. Ed., 2015, 54, (6), 1965 LINK https://doi.org/10.1002/anie.201409246
    [Google Scholar]
  97. W. Yuan, P. Orecchia, M. Oestreich, Chem. Commun., 2017, 53, (75), 10390 LINK https://doi.org/10.1039/c7cc06195a
    [Google Scholar]
  98. I. Khan, B. G. Reed-Berendt, R. L. Melen, L. C. Morrill, Angew. Chem. Int. Ed., 2018, 57, (38), 12356 LINK https://doi.org/10.1002/anie.201808800
    [Google Scholar]
  99. M. Pérez, C. B. Caputo, R. Dobrovetsky, D. W. Stephan, Proc. Natl. Acad. Sci. U.S.A., 2014, 111, (30), 10917 LINK https://doi.org/10.1073/pnas.1407484111
    [Google Scholar]
  100. S. Li, G. Li, W. Meng, H. Du, J. Am. Chem. Soc., 2016, 138, (39), 12956 LINK https://doi.org/10.1021/jacs.6b07245
    [Google Scholar]
  101. S. Li, W. Meng, H. Du, Org. Lett., 2017, 19, (10), 2604 LINK https://doi.org/10.1021/acs.orglett.7b00935
    [Google Scholar]
  102. A. E. Ashley, A. L. Thompson, D. O’Hare, Angew. Chem. Int. Ed., 2009, 48, (52), 9839 LINK https://doi.org/10.1002/anie.200905466
    [Google Scholar]
  103. M.-A. Courtemanche, A. P. Pulis, É. Rochette, M.-A. Légaré, D. W. Stephan, F.-G. Fontaine, Chem. Commun., 2015, 51, (48), 9797 LINK https://doi.org/10.1039/c5cc03072b
    [Google Scholar]
  104. A. L. Travis, S. C. Binding, H. Zaher, T. A. Q. Arnold, J.-C. Buffet, D. O’Hare, Dalton Trans., 2013, 42, (7), 2431 LINK https://doi.org/10.1039/c2dt32525j
    [Google Scholar]
  105. D. W. Stephan, G. Erker, Chem. Sci., 2014, 5, (7), 2625 LINK https://doi.org/10.1039/c4sc00395k
    [Google Scholar]
  106. Y. Jiang, O. Blacque, T. Fox, H. Berke, J. Am. Chem. Soc., 2013, 135, (20), 7751 LINK https://doi.org/10.1021/ja402381d
    [Google Scholar]
  107. C. M. Zall, J. C. Linehan, A. M. Appel, ACS Catal., 2015, 5, (9), 5301 LINK https://doi.org/10.1021/acscatal.5b01646
    [Google Scholar]
  108. C. M. Zall, J. C. Linehan, A. M. Appel, J. Am. Chem. Soc., 2016, 138, (31), 9968 LINK https://doi.org/10.1021/jacs.6b05349
    [Google Scholar]
  109. R. Watari, S. Kuwata, Y. Kayaki, Chem. Lett., 2020, 49, (3), 252 LINK https://doi.org/10.1246/cl.190873
    [Google Scholar]
  110. K. Takeuchi, Y. Tanaka, I. Tanigawa, F. Ozawa, J.-C. Choi, Dalton Trans., 2020, 49, (11), 3630 LINK https://doi.org/10.1039/d0dt00276c
    [Google Scholar]
  111. E. A. Romero, T. Zhao, R. Nakano, X. Hu, Y. Wu, R. Jazzar, G. Bertrand, Nat. Catal., 2018, 1, (10), 743 LINK https://doi.org/10.1038/s41929-018-0140-3
    [Google Scholar]
  112. T. Zhao, X. Hu, Y. Wu, Z. Zhang, Angew. Chem. Int. Ed., 2019, 58, (3), 722 LINK https://doi.org/10.1002/anie.201809634
    [Google Scholar]
  113. S. J. Geier, D. W. Stephan, Chem. Commun., 2010, 46, (7), 1026 LINK https://doi.org/10.1039/b925126j
    [Google Scholar]
  114. S. J. Geier, M. A. Dureen, E. Y. Ouyang, D. W. Stephan, Chem. Eur. J., 2010, 16, (3), 988 LINK https://doi.org/10.1002/chem.200902369
    [Google Scholar]
  115. R. Dobrovetsky, K. Takeuchi, D. W. Stephan, Chem. Commun., 2015, 51, (12), 2396 LINK https://doi.org/10.1039/c4cc09526j
    [Google Scholar]
  116. A. J. Stepen, M. Bursch, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed., 2018, 57, (46), 15253 LINK https://doi.org/10.1002/anie.201809275
    [Google Scholar]
  117. H. Lee, Y. N. Choi, D.-W. Lim, M. M. Rahman, Y.-I. Kim, I. H. Cho, H. W. Kang, J.-H. Seo, C. Jeon, K. B. Yoon, Angew. Chem. Int. Ed., 2015, 54, (44), 13080 LINK https://doi.org/10.1002/anie.201506790
    [Google Scholar]
  118. J. Ye, J. K. Johnson, Catal. Sci. Technol., 2016, 6, (24), 8392 LINK https://doi.org/10.1039/c6cy01245k
    [Google Scholar]
  119. M. Heshmat, J. Phys. Chem. C, 2020, 124, (20), 10951 LINK https://doi.org/10.1021/acs.jpcc.0c01088
    [Google Scholar]
  120. K. Yang, J. Jiang, J. Mater. Chem. A, 2020, 8, (43), 22802 LINK https://doi.org/10.1039/D0TA07051C
    [Google Scholar]
  121. Z. Niu, W. D. C. Bhagya Gunatilleke, Q. Sun, P. C. Lan, J. Perman, J.-G. Ma, Y. Cheng, B. Aguila, S. Ma, Chem, 2018, 4, (11), 2587 LINK https://doi.org/10.1016/j.chempr.2018.08.018
    [Google Scholar]
  122. L. Bromberg, Y. Diao, H. Wu, S. A. Speakman, T. A. Hatton, Chem. Mater., 2012, 54, (9), 1664 LINK https://doi.org/10.1021/cm2034382
    [Google Scholar]
  123. Z. Niu, W. Zhang, P. C. Lan, B. Aguila, S. Ma, Angew. Chem. Int. Ed., 2019, 58, (22), 7420 LINK https://doi.org/10.1002/anie.201903763
    [Google Scholar]
  124. X. Li, Q. Deng, L. Yu, R. Gao, Z. Tong, C. Lu, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Green Chem., 2020, 22, (8), 2549 LINK https://doi.org/10.1039/c9gc04432a
    [Google Scholar]
  125. S. Shyshkanov, T. N. Nguyen, A. Chidambaram, K. C. Stylianou, P. J. Dyson, Chem. Commun., 2019, 55, (73), 10964 LINK https://doi.org/10.1039/c9cc04374h
    [Google Scholar]
  126. Z.-M. Xu, Z. Hu, Y. Huang, S.-J. Bao, Z. Niu, J.-P. Lang, A. M. Al-Enizi, A. Nafady, S. Ma, J. Am. Chem. Soc., 2023, 145, (27), 14994 LINK https://doi.org/10.1021/jacs.3c04929
    [Google Scholar]
  127. Z. Hu, Z.-W. Fan, Z.-M. Xu, Y. Wu, H.-W. Zhang, Y.-L. Huang, Z. Niu, J. Am. Chem. Soc., 2024, 146, (26), 17924 LINK https://doi.org/10.1021/jacs.4c03756
    [Google Scholar]
  128. B. K. Y. Ng, Z.-J. Zhou, T.-T. Liu, T. Yoskamtorn, G. Li, T.-S. Wu, Y.-L. Soo, X.-P. Wu, S. C. E. Tsang, J. Am. Chem. Soc., 2023, 145, (35), 19312 LINK https://doi.org/10.1021/jacs.3c05244
    [Google Scholar]
  129. W. Chen, S. Li, L. Yi, Z. Chen, Z. Li, Y. Wu, W. Yan, F. Deng, H. Deng, J. Am. Chem. Soc., 2024, 146, (17), 12215 LINK https://doi.org/10.1021/jacs.4c03133
    [Google Scholar]
  130. Y. Zhang, S. Chen, A. M. Al-Enizi, A. Nafady, Z. Tang, S. Ma, Angew. Chem. Int. Ed., 2023, 62, (2), e202213399 LINK https://doi.org/10.1002/anie.202213399
    [Google Scholar]
  131. Y. Zhang, Y. Jiang, A. Nafady, Z. Tang, A. M. Al-Enizi, K. Tan, S. Ma, ACS Cent. Sci., 2023, 9, (8), 1692 LINK https://doi.org/10.1021/acscentsci.3c00637
    [Google Scholar]
  132. Y. Zhang, J. Guo, P. VanNatta, Y. Jiang, J. Phipps, R. Roknuzzaman, H. Rabaâ, K. Tan, T. AlShahrani, S. Ma, J. Am. Chem. Soc., 2024, 146, (1), 979 LINK https://doi.org/10.1021/jacs.3c11607
    [Google Scholar]
  133. G. Lu, P. Zhang, D. Sun, L. Wang, K. Zhou, Z.-X. Wang, G.-C. Guo, Chem. Sci., 2014, 5, (3), 1082 LINK https://doi.org/10.1039/c3sc52851k
    [Google Scholar]
  134. N. Almora-Barrios, I. Cano, P. W. N. M. van Leeuwen, N. López, ACS Catal., 2017, 7, (6), 3949 LINK https://doi.org/10.1021/acscatal.7b00355
    [Google Scholar]
  135. J. L. Fiorio, N. López, L. M. Rossi, ACS Catal., 2017, 7, (4), 2973 LINK https://doi.org/10.1021/acscatal.6b03441
    [Google Scholar]
  136. J. L. Fiorio, R. V. Gonçalves, E. Teixeira-Neto, M. A. Ortuño, N. López, L. M. Rossi, ACS Catal., 2018, 8, (4), 3516 LINK https://doi.org/10.1021/acscatal.8b00806
    [Google Scholar]
  137. K. K. Ghuman, T. E. Wood, L. B. Hoch, C. A. Mims, G. A. Ozin, C. V. Singh, Phys. Chem. Chem. Phys., 2015, 17, (22), 14623 LINK https://doi.org/10.1039/c5cp02613j
    [Google Scholar]
  138. M. Ghoussoub, S. Yadav, K. K. Ghuman, G. A. Ozin, C. V. Singh, ACS Catal., 2016, 6, (10), 7109 LINK https://doi.org/10.1021/acscatal.6b01545
    [Google Scholar]
  139. K. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc., 2016, 138, (4), 1206 LINK https://doi.org/10.1021/jacs.5b10179
    [Google Scholar]
  140. L. Wang, T. Yan, R. Song, W. Sun, Y. Dong, J. Guo, Z. Zhang, X. Wang, G. A. Ozin, Angew. Chem. Int. Ed., 2019, 58, (28), 9501 LINK https://doi.org/10.1002/anie.201904568
    [Google Scholar]
  141. T. Yan, L. Wang, Y. Liang, M. Makaremi, T. E. Wood, Y. Dai, B. Huang, F. M. Ali, Y. Dong, G. A. Ozin, Nat. Commun., 2019, 10, (1), 2521 LINK https://doi.org/10.1038/s41467-019-10524-2
    [Google Scholar]
  142. T. Yan, N. Li, L. Wang, W. Ran, P. N. Duchesne, L. Wan, N. T. Nguyen, L. Wang, M. Xia, G. A. Ozin, Nat. Commun., 2020, 11, 6095 LINK https://doi.org/10.1038/s41467-020-19997-y
    [Google Scholar]
  143. Y. Dong, K. K. Ghuman, R. Popescu, P. N. Duchesne, W. Zhou, J. Y. Y. Loh, F. M. Ali, J. Jia, D. Wang, X. Mu, C. Kübel, L. Wang, L. He, M. Ghoussoub, Q. Wang, T. E. Wood, L. M. Reyes, P. Zhang, N. P. Kherani, C. V. Singh, G. A. Ozin, Adv. Sci., 2018, 5, (6), 1700732 LINK https://doi.org/10.1002/advs.201700732
    [Google Scholar]
  144. S. Zhang, Z.-Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C.-R. Chang, Y. Qu, Nat. Commun., 2017, 8, (1), 15266 LINK https://doi.org/10.1038/ncomms15266
    [Google Scholar]
  145. Z.-Q. Huang, L.-P. Liu, S. Qi, S. Zhang, Y. Qu, C.-R. Chang, ACS Catal., 2018, 8, (1), 546 LINK https://doi.org/10.1021/acscatal.7b02732
    [Google Scholar]
  146. Z. Zhang, Z.-Q. Wang, Z. Li, W.-B. Zheng, L. Fan, J. Zhang, Y.-M. Hu, M.-F. Luo, X.-P. Wu, X.-Q. Gong, W. Huang, J.-Q. Lu, ACS Catal., 2020, 10, (24), 14560 LINK https://doi.org/10.1021/acscatal.0c04523
    [Google Scholar]
  147. S. Zhang, M. Zhang, Y. Qu, Acta Phys. Chim. Sin., 2020, 36, (9), 1911050 LINK https://doi.org/10.3866/PKU.WHXB201911050
    [Google Scholar]
  148. C. Riley, S. Zhou, D. Kunwar, A. De La Riva, E. Peterson, R. Payne, L. Gao, S. Lin, H. Guo, A. Datye, J. Am. Chem. Soc., 2018, 140, (40), 12964 LINK https://doi.org/10.1021/jacs.8b07789
    [Google Scholar]
  149. S. Zhou, L. Gao, F. Wei, S. Lin, H. Guo, J. Catal., 2019, 375, 410 LINK https://doi.org/10.1016/j.jcat.2019.06.032
    [Google Scholar]
  150. Y. Cao, H. Zheng, G. Zhu, H. Wu, L. He, Chin. Chem. Lett., 2021, 32, (2), 770 LINK https://doi.org/10.1016/j.cclet.2020.05.045
    [Google Scholar]
  151. X. Zhao, J. Wang, M. Yang, N. Lei, L. Li, B. Hou, S. Miao, X. Pan, A. Wang, T. Zhang, ChemSusChem, 2017, 10, (5), 819 LINK https://doi.org/10.1002/cssc.201601503
    [Google Scholar]
  152. S. Zhang, Z.-Q. Huang, X. Chen, J. Gan, X. Duan, B. Yang, C.-R. Chang, Y. Qu, J. Catal., 2019, 372, 142 LINK https://doi.org/10.1016/j.jcat.2019.02.033
    [Google Scholar]
  153. H. Chen, C. Xiong, J. Moon, A. S. Ivanov, W. Lin, T. Wang, J. Fu, D. Jiang, Z. Wu, Z. Yang, S. Dai, J. Am. Chem. Soc., 2022, 144, (24), 10688 LINK https://doi.org/10.1021/jacs.2c00343
    [Google Scholar]
  154. Q. Wu, R. Qin, M. Zhu, H. Shen, S. Yu, Y. Zhong, G. Fu, X. Yi, N. Zheng, Chem. Sci., 2024, 15, (9), 3140 LINK https://doi.org/10.1039/d3sc06425e
    [Google Scholar]
  155. S. Liu, M. Dong, Y. Wu, S. Luan, Y. Xin, J. Du, S. Li, H. Liu, B. Han, Nat. Commun., 2022, 13, 2320 LINK https://doi.org/10.1038/s41467-022-29970-6
    [Google Scholar]
  156. X. Sun, B. Li, T. Liu, J. Song, D. S. Su, Phys. Chem. Chem. Phys., 2016, 18, (16), 11120 LINK https://doi.org/10.1039/c5cp07969a
    [Google Scholar]
  157. A. A. Abakumov, I. B. Bychko, A. S. Nikolenko, P. E. Strizhak, Theor. Exp. Chem., 2018, 54, (4), 218 LINK https://doi.org/10.1007/s11237-018-9566-6
    [Google Scholar]
  158. W. Liu, Y. Chen, H. Qi, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, C. Liu, A. Wang, J. Li, T. Zhang, Angew. Chem. Int. Ed., 2018, 57, (24), 7071 LINK https://doi.org/10.1002/anie.201802231
    [Google Scholar]
  159. J. Zhao, X. Liu, Z. Chen, ACS Catal., 2017, 7, (1), 766 LINK https://doi.org/10.1021/acscatal.6b02727
    [Google Scholar]
/content/journals/10.1595/205651325X17313449269327
Loading
/content/journals/10.1595/205651325X17313449269327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test