Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135

Abstract

Electrical discharge machining (EDM) is a highly effective and widely utilised unconventional manufacturing technology primarily used to produce complicated forms in materials that are challenging to machine. This versatile manufacturing approach finds applications in producing diverse items such as surgical instruments, aerospace components, automotive parts, dies and moulds. Despite its manifold advantages, this method presents notable drawbacks, including relatively modest material removal rates (MRR), significant tool wear rates (TWR), electrode wear ratio (EWR) and notable surface roughness (SR). The current paper examines numerous approaches used by researchers to enhance the functionality of EDM and the scope for upcoming research. The effects of various circuit and non-circuit characteristics on performance metrics like MRR, TWR and SR are listed. The impact of different electrode material, dielectrics and their alterations on machining performance are carefully examined. Furthermore, the paper elucidates a range of advanced EDM iterations developed to enhance performance through cutting-edge technologies. It delves into research findings concerning the environmental sustainability of EDM. It also examines various theoretical models that have been put out to describe EDM’s spark generation and material removal processes. The review’s final section provides a summary of the potential areas for EDM research in the future. The investigation has shown that material removal in EDM is a complicated process. The correct electrode and dielectric material must be chosen and their properties must be adjusted to fit the type of workpiece material for it to be effective. The choice of circuit parameters is also affected by the type of workpiece material. The effectiveness of EDM in machining metal matrix composites (MMCs), ceramics and nanomaterials requires more investigation.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17309868513523
2025-07-01
2025-05-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Vijayan_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17309868513523&mimeType=html&fmt=ahah

References

  1. X. Mao, S. Almeida, J. Mo, S. Ding, Int. J. Adv. Manuf. Technol., 2022, 121, (5–6), 2947 LINK https://doi.org/10.1007/s00170-022-09549-7
    [Google Scholar]
  2. W. Ming, S. Zhang, G. Zhang, J. Du, J. Ma, W. He, C. Cao, K. Liu, Int. J. Heat Mass Transf., 2022, 187, 122563 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2022.122563
    [Google Scholar]
  3. S. A. Mullya, G. Karthikeyan, V. S. Ganachari, J. Braz. Soc. Mech. Sci. Eng., 2021, 43, (9), 424 LINK https://doi.org/10.1007/s40430-021-03146-7
    [Google Scholar]
  4. M. Gangil, M. K. Pradhan, R. Purohit, Mater. Today Proc., 2017, 4, (2), 2048 LINK https://doi.org/10.1016/j.matpr.2017.02.050
    [Google Scholar]
  5. B. Kuriachen, J. Mathew, Mater. Manuf. Process., 2016, 31, (4), 439 LINK https://doi.org/10.1080/10426914.2015.1004705
    [Google Scholar]
  6. P. Sadagopan, B. Mouliprasanth, Int. J. Adv. Manuf. Technol., 2017, 92, (1–4), 277 LINK https://doi.org/10.1007/s00170-017-0039-1
    [Google Scholar]
  7. B. Singaravel, K. C. Shekar, G. G. Reddy, S. D. Prasad, Ain Shams Eng. J., 2020, 11, (1), 143 LINK https://doi.org/10.1016/j.asej.2019.07.010
    [Google Scholar]
  8. H. Dong, Y. Liu, M. Li, Y. Zhou, T. Liu, D. Li, Q. Sun, Y. Zhang, R. Ji, J. Manuf. Process., 2019, 46, 118 LINK https://doi.org/10.1016/j.jmapro.2019.08.035
    [Google Scholar]
  9. L. Kong, Z. Liu, M. Qiu, W. Wang, Y. Han, S. Bai, J. Manuf. Process., 2019, 41, 188 LINK https://doi.org/10.1016/j.jmapro.2019.02.023
    [Google Scholar]
  10. R. Zou, Z. Yu, C. Zhang, C. Yan, X. Liu, J. Mater. Process. Technol., 2019, 273, 116270 LINK https://doi.org/10.1016/j.jmatprotec.2019.116270
    [Google Scholar]
  11. N. M. Elsiti, M. Y. Noordin, Key Eng. Mater., 2017, 740, 125 LINK https://doi.org/10.4028/www.scientific.net/kem.740.125
    [Google Scholar]
  12. V. D. Bui, J. W. Mwangi, A. Schubert, J. Manuf. Process., 2019, 44, 261 LINK https://doi.org/10.1016/j.jmapro.2019.05.032
    [Google Scholar]
  13. N. M. Elsiti, M. Y. Noordin, A. Idris, F. S. Majeed, J. Phys. Conf. Ser., 2017, 914, 012025 LINK https://doi.org/10.1088/1742-6596/914/1/012025
    [Google Scholar]
  14. A. Y. Joshi, A. Y. Joshi, Heliyon, 2019, 5, (12), e02963 LINK https://doi.org/10.1016/j.heliyon.2019.e02963
    [Google Scholar]
  15. T. Czelusniak, C. F. Higa, R. D. Torres, C. A. H. Laurindo, J. M. F. de Paiva Júnior, A. Lohrengel, F. L. Amorim, J. Braz. Soc. Mech. Sci. Eng., 2019, 41, (1), 14 LINK https://doi.org/10.1007/s40430-018-1520-y
    [Google Scholar]
  16. S. Dong, Z. Wang, Y. Wang, H. Liu, Procedia CIRP, 2016, 42, 257 LINK https://doi.org/10.1016/j.procir.2016.02.282
    [Google Scholar]
  17. R. Kumar, I. Singh, J. Mater. Process. Technol., 2019, 264, 211 LINK https://doi.org/10.1016/j.jmatprotec.2018.09.014
    [Google Scholar]
  18. X. Chen, Z. Wang, Y. Wang, G. Chi, J. Mater. Process. Technol., 2019, 270, 206 LINK https://doi.org/10.1016/j.jmatprotec.2019.02.028
    [Google Scholar]
  19. G. Malayath, S. Katta, A. M. Sidpara, S. Deb, Measurement, 2019, 134, 888 LINK https://doi.org/10.1016/j.measurement.2018.12.047
    [Google Scholar]
  20. A. K. Sahu, S. S. Mahapatra, Arab. J. Sci. Eng., 2020, 45, (2), 699 LINK https://doi.org/10.1007/s13369-019-04144-7
    [Google Scholar]
  21. A. K. Sahu, S. S. Mahapatra, ‘Optimization of Electrical Discharge Machining of Titanium Alloy (Ti6Al4V) by Grey Relational Analysis Based Firefly Algorithm’, in “Additive Manufacturing of Emerging Materials”, eds. B. AlMangour, Springer International Publishing AG, Cham, Switzerland, 2019, pp. 2953 LINK https://link.springer.com/chapter/10.1007/978-3-319-91713-9_2
    [Google Scholar]
  22. H. Büttner, G. Vieira, M. Hajri, M. Vögtlin, F. Kuster, J. Stirnimann, K. Wegener, Precis. Eng., 2019, 60, 326 LINK https://doi.org/10.1016/j.precisioneng.2019.08.018
    [Google Scholar]
  23. S. Rahul, B. Datta, Bhusan Biswal, Measurement, 2019, 145, 611 LINK https://doi.org/10.1016/j.measurement.2019.06.006
    [Google Scholar]
  24. T. Koyano, Y. Sugata, A. Hosokawa, T. Furumoto, Precis. Eng., 2019, 55, 95 LINK https://doi.org/10.1016/j.precisioneng.2018.08.013
    [Google Scholar]
  25. V. S. Jatti, Alexandria Eng. J., 2018, 57, (4), 2807 LINK https://doi.org/10.1016/j.aej.2017.11.004
    [Google Scholar]
  26. M. Gangil, M. K. Pradhan, Mater. Today Proc., 2018, 5, (2), 7486 LINK https://doi.org/10.1016/j.matpr.2017.11.420
    [Google Scholar]
  27. A. Muttamara, N. Treeranurat, Adv. Mater. Res., 2013, 816–817, 75 LINK https://doi.org/10.4028/www.scientific.net/amr.816-817.75
    [Google Scholar]
  28. H. G. Cheong, Y. S. Kim, C. N. Chu, Precis. Eng., 2019, 55, 484 LINK https://doi.org/10.1016/j.precisioneng.2018.11.003
    [Google Scholar]
  29. V. Gohil, Y. M. Puri, Procedia CIRP, 2018, 68, 70 LINK https://doi.org/10.1016/j.procir.2017.12.024
    [Google Scholar]
  30. M. M. Bahgat, A. Y. Shash, M. Abd-Rabou, I. S. El-Mahallawi, Heliyon, 2019, 5, (6), e01813 LINK https://doi.org/10.1016/j.heliyon.2019.e01813
    [Google Scholar]
  31. S. K. Basha, M. V. J. Raju, M. Kolli, Mater. Today Proc., 2018, 5, (5), 11622 LINK https://doi.org/10.1016/j.matpr.2018.02.132
    [Google Scholar]
  32. V. R. Vaddi, S. R. Ch, S. K. Bushaboina, H. Banka, SAE Technical Paper 2018-28-0033, SAE International, Warrendale, USA, 9th July, 2018 LINK https://doi.org/10.4271/2018-28-0033
  33. M. A. Xavior, P. Ashwath, Proc. Manuf., 2019, 30, 292 LINK https://doi.org/10.1016/j.promfg.2019.02.042
    [Google Scholar]
  34. H. Fazlollahtabar, H. Gholizadeh, Comput. Ind. Eng., 2020, 140, 106225 LINK https://doi.org/10.1016/j.cie.2019.106225
    [Google Scholar]
  35. R. Khanna, R. Maheshwari, A. Modi, S. Tyagi, A. Thakur, R. Rana, Int. J. Adv. Res. Innov., 2017, 5, (4), 55 LINK https://doi.org/10.51976/ijari.541709
    [Google Scholar]
  36. A. Medfai, M. Boujelbene, S. Ben Salem, A. S. Alghamdi, ‘Mathematical Modelling of Surface Roughness in Electrical Discharge Machining Process Using Taguchi Method’, in “Design and Modelling of Mechanical Systems-III”, eds. M. Haddar, F. Chaari, A. Benamara, M. Chouchane, C. Karra, N. Aifaoui, Springer Cham, Switzerland, 2018, pp. 10711080 LINK https://doi.org/10.1007/978-3-319-66697-6_105
    [Google Scholar]
  37. S. Das, R. K. Raman, N. Devarani, S. N. Joshi, Procedia Struct. Integr., 2019, 14, 119 LINK https://doi.org/10.1016/j.prostr.2019.05.016
    [Google Scholar]
  38. H.-P. Nguyen, V.-D. Pham, J. King Saud. Univ., 2021, 33, (1), 37 LINK https://doi.org/10.1016/j.jksues.2019.11.001
    [Google Scholar]
  39. X. Chu, X. Zeng, W. Zhuang, W. Zhou, X. Quan, T. Fu, J. Manuf. Process., 2019, 44, 418 LINK https://doi.org/10.1016/j.jmapro.2019.05.026
    [Google Scholar]
  40. V. Prakash, P. Kumar, P. K. Singh, M. Hussain, A. K. Das, S. Chattopadhyaya, Proc. Inst. Mech. Eng. Part B, 2017, 233, (2), 339 LINK https://doi.org/10.1177/0954405417718591
    [Google Scholar]
  41. K. P. Maity, M. Choubey, Surf. Rev. Lett., 2019, 26, (5), 1830008 LINK https://doi.org/10.1142/s0218625x18300083
    [Google Scholar]
  42. A. Mohammadi, A. F. Tehrani, A. Abdullah, Procedia CIRP, 2013, 6, 583 LINK https://doi.org/10.1016/j.procir.2013.03.005
    [Google Scholar]
  43. A. P. Dwivedi, S. K. Choudhury, Procedia CIRP, 2016, 46, 131 LINK https://doi.org/10.1016/j.procir.2016.03.207
    [Google Scholar]
  44. J. Zhang, F. Han, J. Manuf. Process., 2021, 64, 805 LINK https://doi.org/10.1016/j.jmapro.2021.01.049
    [Google Scholar]
  45. B. Mohan, A. Rajadurai, K. G. Satyanarayana, J. Mater. Process. Technol., 2004, 153–154, 978 LINK https://doi.org/10.1016/j.jmatprotec.2004.04.347
    [Google Scholar]
  46. N. K. Singh, D. Kumar, N. Saraswat, S. Parashar, R. Johari, Mater. Today Proc., 2020, 26, (2), 2533 LINK https://doi.org/10.1016/j.matpr.2020.02.539
    [Google Scholar]
  47. R. Teimouri, H. Baseri, J. Manuf. Process., 2012, 14, (3), 316 LINK https://doi.org/10.1016/j.jmapro.2012.04.002
    [Google Scholar]
  48. R. Naveen Anthuvan, V. Krishnaraj, M. Parthiban, Mater. Today. Proc., 2021, 39, (4), 1688 LINK https://doi.org/10.1016/j.matpr.2020.06.153
    [Google Scholar]
  49. Y.-X. Sun, L. Qin, H.-Y. Chu, X.-C. Xi, W.-S. Zhao, Procedia CIRP, 2022, 113, 278 LINK https://doi.org/10.1016/j.procir.2022.09.159
    [Google Scholar]
  50. N. K. Singh, R. Prasad, D. Johari, Mater. Today Proc., 2018, 5, (11), 23769 LINK https://doi.org/10.1016/j.matpr.2018.10.168
    [Google Scholar]
  51. J. Lei, H. Shen, H. Wu, W. Pan, X. Wu, C. Zhao, J. Mater. Res. Technol., 2024, 30, 9521 LINK https://doi.org/10.1016/j.jmrt.2024.06.035
    [Google Scholar]
  52. N. Ahmed, M. H. Raza, M. A. Ali, W. Tahir, A. U. Rehman, J. Mater. Res. Technol., 2024, 29, 476 LINK https://doi.org/10.1016/j.jmrt.2024.01.125
    [Google Scholar]
  53. B. Sampath, S. Myilsamy, Strojniški vestnik J. Mech. Eng., 2021, 67, (6), 322 LINK https://doi.org/10.5545/sv-jme.2021.7161
    [Google Scholar]
  54. A. Biman-Telang, P. Koshy, D. S. Brock, U. Küpper, A. Klink, T. Herrig, T. Bergs, Precis. Eng., 2024, 91, 383 LINK https://doi.org/10.1016/j.precisioneng.2024.09.022
    [Google Scholar]
  55. V. D. Bui, A. Martin, T. Berger, A. Schubert, Procedia CIRP, 2024, 123, 416 LINK https://doi.org/10.1016/j.procir.2024.05.073
    [Google Scholar]
  56. Y. Ding, L. Kong, W. Lei, Q. Li, K. Ding, Y. He, J. Mater. Res. Technol., 2024, 28, 2219 LINK https://doi.org/10.1016/j.jmrt.2023.12.133
    [Google Scholar]
  57. P. Dharmin M, R. Mihir S, B. C. Khatri, J. B. Valaki, Int. J. Sci. Res. Dev., 2015, 3, (2), 424 LINK https://www.ijsrd.com/Article.php?manuscript=IJSRDV3I2479
    [Google Scholar]
  58. P. Chaudhury, S. Samantaray, Ann. Chim. Sci. Matér., 2019, 43, (4), 273 LINK https://doi.org/10.18280/acsm.430411
    [Google Scholar]
  59. T. Bergs, S. Schneider, S. Harst, A. Klink, Proc.CIRP, 2019, 82, 14 LINK https://doi.org/10.1016/j.procir.2019.04.165
    [Google Scholar]
  60. L. Gu, Y. Zhu, G. He, A. Farhadi, W. Zhao, Int. J. Heat Mass Transf., 2019, 135, 674 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.022
    [Google Scholar]
  61. V. S. Jatti, S. Bagane, Alexandria Eng. J., 2018, 57, (2), 643 LINK https://doi.org/10.1016/j.aej.2017.02.023
    [Google Scholar]
  62. M. Ansari, I. A. Khan, U. Arif, Hybrid Adv., 2024, 6, 100202 LINK https://doi.org/10.1016/j.hybadv.2024.100202
    [Google Scholar]
  63. U. Arif, I. A. Khan, F. Hasan, Mater. Today Proc., 2023, in press LINK https://doi.org/10.1016/j.matpr.2023.06.346
    [Google Scholar]
  64. U. Arif, I. A. Khan, F. Hasan, Mech. Adv. Mater. Struct., 2023, 31, (23), 5906 LINK https://doi.org/10.1080/15376494.2023.2222295
    [Google Scholar]
  65. U. Arif, I. A. Khan, F. Hasan, ‘Thermal Modelling and Parametric Optimization for Machining of Aluminum (Al-10%SiCmicro-SiCnano) Based Hybrid Composite Using Spark Erosion’, 2023, preprint LINK https://doi.org/10.21203/rs.3.rs-3095363/v1
  66. U. Arif, I. A. Khan, F. Hasan, ‘Modelling the Effect of Tool Material on Material Removal Rate in Electric Discharge Machining’ in “Advanced Topics in Mechanics of Materials, Structures and Construction: AToMech1-2023”, eds. E. Carrera, F. Djavanroodi, M. Asad, Materials Research Proceedings, Materials Research Forum LLC, Millersville, Pennsylvania, USA, Vol. 31, 2023, pp. 448455 LINK https://doi.org/10.21741/9781644902592-46
    [Google Scholar]
  67. A. Bourebbou, I. Rezgui, M. Mezoudj, A. Belloufi, M. Abdelkrim, M. Bendifallah, Acad. J. Manuf. Eng., 2022, 20, (1), 84
    [Google Scholar]
  68. N. Zainal, M. Sithambranathan, U. Farooq Khattak, A. Mohd Zain, S. A. Mostafa, A. Mat Deris, Qubahan Acad. J., 2024, 4, (1), 277 LINK https://doi.org/10.48161/qaj.v4n1a465
    [Google Scholar]
  69. A. M. Ubaid, F. T. Dweiri, S. H. Aghdeab, L. Abdullah Al-Juboori, J. Manuf. Sci. Eng., 2018, 140, (1), 011013 LINK https://doi.org/10.1115/1.4038139
    [Google Scholar]
  70. G. K. M. Rao, G. Rangajanardhaa, D. H. Rao, M. S. Rao, J. Mater. Process. Technol., 2009, 209, (3), 1512 LINK https://doi.org/10.1016/j.jmatprotec.2008.04.003
    [Google Scholar]
  71. N. Huu Phan, T. Muthuramalingam, Silicon, 2020, 13, (6), 1879 LINK https://doi.org/10.1007/s12633-020-00573-4
    [Google Scholar]
  72. N. Huu Phan, T. Muthuramalingam, Silicon, 2020, 13, (8), 2771 LINK https://doi.org/10.1007/s12633-020-00632-w
    [Google Scholar]
  73. P. N. Kumar, A. Rajadurai, T. Muthuramalingam, Silicon, 2018, 10, (4), 1723 LINK https://doi.org/10.1007/s12633-017-9660-8
    [Google Scholar]
  74. H. Majumder, K. Maity, J. Adv. Manuf. Syst., 2017, 16, (2), 81 LINK https://doi.org/10.1142/s0219686717500068
    [Google Scholar]
  75. K. Naveen Babu, R. Karthikeyan, A. Punitha, Mater. Today Proc., 2019, 19, (2), 501 LINK https://doi.org/10.1016/j.matpr.2019.07.643
    [Google Scholar]
  76. C. P. Mohanty, S. S. Mahapatra, M. R. Singh, J. Intell. Manuf., 2016, 27, (6), 1171 LINK https://doi.org/10.1007/s10845-014-0942-3
    [Google Scholar]
  77. R. Rajesh, M. D. Anand, Proc. Eng., 2012, 38, 3941 LINK https://doi.org/10.1016/j.proeng.2012.06.451
    [Google Scholar]
  78. M. Lin, C. Tsao, C. Hsu, A. Chiou, P. Huang, Y. Lin, Trans. Nonferrous Met. Soc. China, 2013, 23, (3), 661 LINK https://doi.org/10.1016/s1003-6326(13)62513-3
    [Google Scholar]
  79. A. Majumder, P. K. Das, A. Majumder, M. Debnath, Prod. Manuf. Res., 2014, 2, (1), 228 LINK https://doi.org/10.1080/21693277.2014.902341
    [Google Scholar]
  80. G. Ugrasen, H. V. Ravindra, G. V. N. Prakash, R. Keshavamurthy, Proc. Mater. Sci., 2014, 6, 1752 LINK https://doi.org/10.1016/j.mspro.2014.07.205
    [Google Scholar]
  81. M. Azadi Moghaddam, F. Kolahan, Sci. Iran., 2020, 27, (3), 1206 LINK https://doi.org/10.24200/sci.2019.5152.1123
    [Google Scholar]
  82. J. Singh, R. K. Sharma, J. Manuf. Sci. Prod., 2017, ahead of print
    [Google Scholar]
  83. U. Arif, I. Ali Khan, F. Hasan, Adv. Mater. Process. Technol., 2022, 9, (3), 970 LINK https://doi.org/10.1080/2374068x.2022.2108599
    [Google Scholar]
  84. M.-C. Radu, E. Herghelegiu, C. Tampu, B. Chirita, C. Schnakovszky, P. Radu, O. Ghiorghe, Heliyon, 2024, 10, (11), e31772 LINK https://doi.org/10.1016/j.heliyon.2024.e31772
    [Google Scholar]
  85. J. Singh, R. K. Sharma, Front. Mech. Eng., 2016, 11, (4), 374 LINK https://doi.org/10.1007/s11465-016-0388-8
    [Google Scholar]
  86. Jagadish, A. Ray, Int. J. Adv. Manuf. Technol., 2016, 87, (5–8), 1299 LINK https://doi.org/10.1007/s00170-014-6372-8
    [Google Scholar]
  87. J. B. Valaki, P. P. Rathod, Mater. Manuf. Process., 2016, 31, (4), 541 LINK https://doi.org/10.1080/10426914.2015.1070430
    [Google Scholar]
  88. N. M. Abbas, N. Yusoff, R. M. Wahab, Proc. Eng., 2012, 41, 1684 LINK https://doi.org/10.1016/j.proeng.2012.07.368
    [Google Scholar]
  89. J. B. Valaki, P. P. Rathod, B. C. Khatri, Proc. Inst. Mech. Eng. Part B, 2014, 229, (9), 1481 LINK https://doi.org/10.1177/0954405414543314
    [Google Scholar]
  90. L. Tang, Y. T. Du, Int. J. Adv. Manuf. Technol., 2014, 70, (1–4), 469 LINK https://doi.org/10.1007/s00170-013-5274-5
    [Google Scholar]
  91. K. Ishfaq, M. Sana, M. Rehman, S. Anwar, A. Y. Alfaify, A. W. Zia, J. Braz. Soc. Mech. Sci. Eng., 2023, 45, (4), 235 LINK https://doi.org/10.1007/s40430-023-04126-9
    [Google Scholar]
  92. K. Ishfaq, M. Asad, W. M. Ashraf, M. Sana, S. Anwar, W. Zhang, V. Dua, J. Clean. Prod., 2024, 457, 142482 LINK https://doi.org/10.1016/j.jclepro.2024.142482
    [Google Scholar]
  93. Z. Kou, F. Han, J. Clean. Prod., 2018, 189, 78 LINK https://doi.org/10.1016/j.jclepro.2018.04.072
    [Google Scholar]
  94. K. Bhatia, A Singla, A. Sharma, S. S. Sengar, A. Selokar, ‘A Review on Different Dielectric Fluids and Machining of Si3N4 and Al2O3 Composites via EDM’, in “Advances in Industrial and Production Engineering”, eds. K. Shanker, R. Shanker, R. Sindhwani, Springer Singapore, 2019, pp. 585596 LINK https://doi.org/10.1007/978-981-13-6412-9_57
  95. V. Srinivas Viswanth, R. Ramanujam, G. Rajyalakshmi, Mater. Today Proc., 2018, 5, (5), 12525 LINK https://doi.org/10.1016/j.matpr.2018.02.234
    [Google Scholar]
  96. R. Bajaj, A. K. Tiwari, A. R. Dixit, Mater. Today Proc., 2015, 2, (4–5), 3302 LINK https://doi.org/10.1016/j.matpr.2015.07.147
    [Google Scholar]
  97. L. Selvarajan, J. Rajavel, V. Prabakaran, B. Sivakumar, G. Jeeva, Mater. Today Proc., 2018, 5, (2), 5506 LINK https://doi.org/10.1016/j.matpr.2017.12.140
    [Google Scholar]
  98. K. Paswan, S. Chattopadhyaya, A. Pramanik, Mater. Today. Proc, 2018, 5, (11), 24428 LINK https://doi.org/10.1016/j.matpr.2018.10.239
    [Google Scholar]
  99. M. K. Zia, S. Pervaiz, S. Anwar, W. A. Samad, Int. J. Precis. Eng. Manuf., 2019, 6, (5), 931 LINK https://doi.org/10.1007/s40684-019-00043-2
    [Google Scholar]
/content/journals/10.1595/205651325X17309868513523
Loading
/content/journals/10.1595/205651325X17309868513523
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test