Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135

Abstract

As a potential material for next-generation platinum channels, the Pt-5Au alloy offers promising advantages by significantly reducing processing costs while improving the quality of glass substrate production. This study investigates the possibility of enhancing the mechanical properties of the Pt-5Au alloy by introducing trace amounts of zirconium, leading to the formation of dispersion-strengthening phases. Using first-principles calculations, we systematically examined the mechanical and thermodynamic properties of four potential strengthening phases: PtZr, PtZr, PtZr and PtZr. The calculation results of the enthalpy of formation (ΔH) and cohesive energy (E) of four potential strengthening phases show that they can all spontaneously perform and stably exist under 0 K and 0 Pa environment. Among them, PtZr exhibits the most favourable properties, including outstanding toughness (Pugh’s ratio = 2.212), exceptional hardness (H = 10.820 GPa) and thermodynamic properties closely aligned with those of the Pt-5Au alloy, making it the most suitable candidate for a dispersion-strengthening phase. This study provides a comprehensive analysis of the thermodynamic performance, mechanical performance and high-temperature performance of potential strengthening phases in the Pt-5Au alloy, offering theoretical guidance for optimising its composition and supporting the industrial application of platinum channels in the production process of high-performance glass substrates.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17340984130399
2025-07-01
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Hao_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17340984130399&mimeType=html&fmt=ahah

References

  1. T.-T. Ngo, C.-C. Wang, H.-H. Wu, V.-T. Than, Therm. Sci. Eng. Prog., 2020, 19, 100592 LINK https://doi.org/10.1016/j.tsep.2020.100592
    [Google Scholar]
  2. J. Liu, C. Li, H. Peng, Q. Zeng, A. Lu, Ceram. Int., 2021, 47, (15), 21650 LINK https://doi.org/10.1016/j.ceramint.2021.04.178
    [Google Scholar]
  3. A. K. Varshneya, J. C. Mauro, ‘Fundamentals of Inorganic Glass Making’, in “Fundamentals of Inorganic Glasses”, 3rd Edn., ch. 22, Elsevier, Amsterdam, The Netherlands, 2019, pp. 631685 LINK https://doi.org/10.1016/b978-0-12-816225-5.00022-5
    [Google Scholar]
  4. Y. Yalikun, Y. Tanaka, Sens. Actuators, A, 2017, 263, 102 LINK https://doi.org/10.1016/j.sna.2017.05.047
    [Google Scholar]
  5. Q. Li, J. Liu, R. Li, W. Xiaoyi, Glass Enamel, 2017, 45, (04), 13 LINK https://doi.org/10.13588/j.cnki.g.e.1000-2871.2017.04.003
    [Google Scholar]
  6. K. An, Z. Su, M. Zhang, Y. Deng, Appl. Therm. Eng., 2024, 250, 123551 LINK https://doi.org/10.1016/j.applthermaleng.2024.123551
    [Google Scholar]
  7. S. Majumder, N. E. McGruer, P. M. Zavracky, J. Vac. Sci. Technol. A, 1997, 15, (3), 1246 LINK https://doi.org/10.1116/1.580602
    [Google Scholar]
  8. S. T. Patton, J. S. Zabinski, Tribol. Lett., 2005, 18, (2), 215 LINK https://doi.org/10.1007/s11249-004-1778-3
    [Google Scholar]
  9. A. Niwa, Y. Akita, K. Enomoto, R. Aoyama, H. Akebono, A. Sugeta, Procedia Struct. Integr., 2019, 19, 106 LINK https://doi.org/10.1016/j.prostr.2019.12.013
    [Google Scholar]
  10. N. M. Pereira Machado, L. Pereira, M. Neyret, C. Lemaître, P. Marchal, J. Nucl. Mater., 2022, 563, 153618 LINK https://doi.org/10.1016/j.jnucmat.2022.153618
    [Google Scholar]
  11. D. F. Lupton, J. Merker, B. Fischer, R. Völkl, ‘Platinum Materials for the Glass Industry’, IPMI Precious Metals 2000: 24th International Precious Metals Conference, Williamsburg, Virginia, USA, 11th–14th June, 2000
    [Google Scholar]
  12. Q. Li, C. X. Chun, S. Y. Yang, ‘Measures to Extend the Life of Platinum Channels’, E-glass Technology, 2016, (48), 7880
    [Google Scholar]
  13. L. Zhang, L. Zhuang, H. Liu, L. Zhang, R. Cai, N. Chen, X. Yang, Z. Zhu, D. Yang, X. Yao, Small Sci., 2021, 1, (4), 2000027 LINK https://doi.org/10.1002/smsc.202000027
    [Google Scholar]
  14. H. A. Murdoch, C. A. Schuh, J. Mater. Res., 2013, 28, (16), 2154 LINK https://doi.org/10.1557/jmr.2013.211
    [Google Scholar]
  15. P. Lu, F. Abdeljawad, M. Rodriguez, M. Chandross, D. P. Adams, B. L. Boyce, B. G. Clark, N. Argibay, Materialia, 2019, 6, 100298 LINK https://doi.org/10.1016/j.mtla.2019.100298
    [Google Scholar]
  16. F. Qian, S. Jin, G. Sha, Y. Li, Acta Mater., 2018, 157, 114 LINK https://doi.org/10.1016/j.actamat.2018.07.001
    [Google Scholar]
  17. P. Tan, Q. Wei, B. Wang, Mater. Sci. Eng. A, 2024, 908, 146761 LINK https://doi.org/10.1016/j.msea.2024.146761
    [Google Scholar]
  18. L. Jiayan, X. Ming, Y. Youcai, Z. Jiming, C. Yongtai, L. Manmen, W. Saibei, H. Jieqiong, N. Ping, Rare Met. Mater. Eng., 2013, 42, (10), 2027 LINK https://doi.org/10.1016/s1875-5372(14)60020-5
    [Google Scholar]
  19. A. Otero-de-la-Roza, V. Luaña, Comput. Phys. Commun., 2011, 182, (8), 1708 LINK https://doi.org/10.1016/j.cpc.2011.04.016
    [Google Scholar]
  20. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Comput. Phys. Commun., 2011, 182, (10), 2232 LINK https://doi.org/10.1016/j.cpc.2011.05.009
    [Google Scholar]
  21. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64, (4), 1045 LINK https://doi.org/10.1103/revmodphys.64.1045
    [Google Scholar]
  22. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, (18), 3865 LINK https://doi.org/10.1103/physrevlett.77.3865
    [Google Scholar]
  23. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett., 2008, 100, (13), 136406 LINK https://doi.org/10.1103/physrevlett.100.136406
    [Google Scholar]
  24. Y. Wang, P. Wisesa, A. Balasubramanian, S. Dwaraknath, T. Mueller, Comput. Mater. Sci., 2021, 187, 110100 LINK https://doi.org/10.1016/j.commatsci.2020.110100
    [Google Scholar]
  25. S. R. Billeter, A. Curioni, W. Andreoni, Comput. Mater. Sci., 2003, 27, (4), 437 LINK https://doi.org/10.1016/s0927-0256(03)00043-0
    [Google Scholar]
  26. L. Allan, R. E. Mapasha, W. M. Mulwa, J. M. Mwabora, R. J. Musembi, Results Mater., 2024, 22, 100558 LINK https://doi.org/10.1016/j.rinma.2024.100558
    [Google Scholar]
  27. Y. Pan, Vacuum, 2020, 181, 109742 LINK https://doi.org/10.1016/j.vacuum.2020.109742
    [Google Scholar]
  28. J. U. Rehman, M. Usman, M. B. Tahir, A. Hussain, M. Rashid, J. Supercond. Nov. Magn., 2021, 34, (12), 3089 LINK https://doi.org/10.1007/s10948-021-06049-9
    [Google Scholar]
  29. J. Ji, H. Bu, Y. Duan, M. Peng, H. Qi, X. Wang, L. Shen, Vacuum, 2023, 214, 112232 LINK https://doi.org/10.1016/j.vacuum.2023.112232
    [Google Scholar]
  30. A. A. Maradudin, E. W. Montroll, G. H. Weiss, I. P. Ipatova, “Theory of Lattice Dynamics in the Harmonic Approximation”, 2nd Edn., eds. H. Ehrenreich, F. Seitz, D. Turnball, Academic Press Inc, New York, USA, 1971, pp. 521525
    [Google Scholar]
  31. M. A. Blanco, A. M. Pendás, E. Francisco, J. M. Recio, R. Franco, J. Mol. Struct. THEOCHEM, 1996, 368, 245 LINK https://doi.org/10.1016/s0166-1280(96)90571-0
    [Google Scholar]
  32. E. Francisco, J. M. Recio, M. A. Blanco, A. M. Pendás, A. Costales, J. Phys. Chem. A, 1998, 102, (9), 1595 LINK https://doi.org/10.1021/jp972516j
    [Google Scholar]
  33. E. Francisco, M. A. Blanco, G. Sanjurjo, Phys. Rev. B, 2001, 63, (9), 094107 LINK https://doi.org/10.1103/physrevb.63.094107
    [Google Scholar]
  34. M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, A. M. Pendás, Phys. Rev. B, 2002, 66, (14), 144112 LINK https://doi.org/10.1103/physrevb.66.144112
    [Google Scholar]
  35. M. A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun., 2004, 158, (1), 57 LINK https://doi.org/10.1016/j.comphy.2003.12.001
    [Google Scholar]
  36. X. Bai, J. Li, Y. Dai, B. Liu, Trans. Nonferrous Met. Soc. China, 2013, 23, (12), 3704 LINK https://doi.org/10.1016/s1003-6326(13)62920-9
    [Google Scholar]
  37. Y. Pan, Y. Lin, X. Wang, S. Chen, L. Wang, C. Tong, Z. Cao, J. Alloys Compd., 2015, 643, 49 LINK https://doi.org/10.1016/j.jallcom.2015.04.130
    [Google Scholar]
  38. Y. Zhang, M. Wang, C. Chang, K. Xu, H. Ma, F. Zhao, Chem. Phys., 2018, 507, 19 LINK https://doi.org/10.1016/j.chemphys.2018.04.004
    [Google Scholar]
  39. H. Okamoto, J. Phase Equilib. Diffus., 2008, 29, (4), 385 LINK https://doi.org/10.1007/s11669-008-9342-8
    [Google Scholar]
  40. J. K. Stalick, R. M. Waterstrat, J. Alloys Compd., 2007, 430, (1–2), 123 LINK https://doi.org/10.1016/j.jallcom.2006.04.055
    [Google Scholar]
  41. Q. Gu, Y. Wang, E. Leng, Y. Huang, N. Jin, Phys. B Condens. Matter, 2024, 693, 416401 LINK https://doi.org/10.1016/j.physb.2024.416401
    [Google Scholar]
  42. J. U. Rehman, M. Usman, S. Amjid, M. Sagir, M. B. Tahir, A. Hussain, I. Alam, R. Nazir, H. Alrobei, S. Ullah, M. A. Assiri, Comput. Theor. Chem., 2022, 1209, 113624 LINK https://doi.org/10.1016/j.comptc.2022.113624
    [Google Scholar]
  43. M. Usman, J. U. Rehman, M. B. Tahir, Solid State Commun., 2023, 369, 115198 LINK https://doi.org/10.1016/j.ssc.2023.115198
    [Google Scholar]
  44. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater., 2012, 33, 93 LINK https://doi.org/10.1016/j.ijrmhm.2012.02.021
    [Google Scholar]
  45. X. Chong, Y. Jiang, R. Zhou, J. Feng, Ceram. Int., 2016, 42, (2A), 2117 LINK https://doi.org/10.1016/j.ceramint.2015.09.105
    [Google Scholar]
  46. A. Rafique, M. Usman, J. U. Rehman, A. Nazeer, H. Ullah, A. Hussain, J. Phys. Chem. Solids, 2023, 181, 111559 LINK https://doi.org/10.1016/j.jpcs.2023.111559
    [Google Scholar]
  47. M. Usman, J. U. Rehman, M. B. Tahir, A. Hussain, H. Alrobei, M. Alzaid, A. Dahshan, Mater. Sci. Semicond. Process., 2023, 160, 107399 LINK https://doi.org/10.1016/j.mssp.2023.107399
    [Google Scholar]
/content/journals/10.1595/205651325X17340984130399
Loading
/content/journals/10.1595/205651325X17340984130399
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test