Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135

Abstract

The ultrasonic and thermophysical properties of the platinum group metal nitrides (PGMNs) osmium nitride, iridium nitride and platinum nitride were scrutinised along <100>, <110> and <111> orientations at room temperature. In the present work, we evaluate the second, third and fourth order elastic constants (SOECs, TOECs and FOECs) of the PGMNs in the temperature span 0–500 K using the Coulomb and Born-Mayer potential model. At T = 0 K, the mechanical properties of the PGMNs were investigated for potential industrial applications. The ultrasonic wave velocity and other thermophysical parameters have been determined to evaluate the thermal performance of the chosen materials along the <100>, <110> and <111> orientations. The ultrasonic attenuation resulting from both the phonon-viscosity mechanism and the thermoelastic relaxation mechanism was calculated for three different orientations at room temperature. These calculated results were then analysed and compared with provided data on the selected materials and similar material types.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17236415666329
2025-07-01
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Kumar_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17236415666329&mimeType=html&fmt=ahah

References

  1. A. L. Ivanovskii, Russ. Chem. Rev., 2009, 78, (4), 303 LINK https://doi.org/10.1070/rc2009v078n04abeh004036
    [Google Scholar]
  2. R. Rajeswarapalanichamy, G. S. Priyanga, S. Puvaneswari, K. Iyakutti, Int. J. Refract. Met. Hard Mater., 2015, 48, 382 LINK https://doi.org/10.1016/j.ijrmhm.2014.10.005
    [Google Scholar]
  3. W. Li, J. Alloys Compd., 2012, 537, 216 LINK https://doi.org/10.1016/j.jallcom.2012.05.070
    [Google Scholar]
  4. H. Rached, D. Rached, R. Khenata, S. Benalia, M. Rabah, F. Semari, H. Righi, Phase Trans., 2011, 84, (3), 269 LINK https://doi.org/10.1080/01411594.2010.530483
    [Google Scholar]
  5. Z. Zhou, X. Zhou, K. Zhang, Phys. B Condens. Matter, 2016, 503, 141 LINK https://doi.org/10.1016/j.physb.2016.09.037
    [Google Scholar]
  6. S. Soni, A. Jain, K. K. Choudhary, N. Kaurav, J. Metas. Nanocryst. Mater., 2016, 28, 16 LINK https://doi.org/10.4028/www.scientific.net/jmnm.28.16
    [Google Scholar]
  7. S. K. R. Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, S. Kodambaka, Phys. Rev. B, 2006, 73, (10), 104118 LINK https://doi.org/10.1103/physrevb.73.104118
    [Google Scholar]
  8. F. Peng, H. Fu, X. Yang, Phys. B Condens. Matter, 2008, 403, (17), 2851 LINK https://doi.org/10.1016/j.physb.2008.02.022
    [Google Scholar]
  9. L. H. Yu, K. L. Yao, Z. L. Liu, Y. S. Zhang, Phys. B Condens. Matter, 2007, 399, (1), 50 LINK https://doi.org/10.1016/j.physb.2007.05.020
    [Google Scholar]
  10. D. Dahliah, M. Abu-Jafar, R. Khenata, A. Mousa, R. Jaradat, S. Al-Qaisi, S. Bin Omran, Chinese J. Phys., 2017, 55, (2), 211 LINK https://doi.org/10.1016/j.cjph.2016.12.007
    [Google Scholar]
  11. R. Yu, X. F. Zhang, Appl. Phys. Lett., 2005, 86, (12), 121913 LINK https://doi.org/10.1063/1.1890466
    [Google Scholar]
  12. X. Zhang, G. Trimarchi, A. Zunger, Phys. Rev. B, 2009, 79, (9), 092102 LINK https://doi.org/10.1103/physrevb.79.092102
    [Google Scholar]
  13. P. K. Jha, S. D. Gupta, S. K. Gupta, D. Kirin, Int. J. Mod. Phys. B, 2011, 25, (11), 1543 LINK https://doi.org/10.1142/s0217979211100382
    [Google Scholar]
  14. Y. Liang, J. Zhao, B. Zhang, Solid State Commun., 2008, 146, (11–12), 450 LINK https://doi.org/10.1016/j.ssc.2008.04.006
    [Google Scholar]
  15. W. Chen, J. Z. Jiang, J. Alloys Compd., 2010, 499, (2), 243 LINK https://doi.org/10.1016/j.jallcom.2010.03.176
    [Google Scholar]
  16. J. Uddin, G. E. Scuseria, Phys. Rev. B, 2005, 72, (3), 035101 LINK https://doi.org/10.1103/physrevb.72.035101
    [Google Scholar]
  17. Q. Liu, W.-M. Peng, F. Peng, Chinese Phys. Lett., 2014, 31, (8), 86202 LINK https://doi.org/10.1088/0256-307x/31/8/086202
    [Google Scholar]
  18. A. Yildiz, Ü. Akinci, O. Gülseren, İ. Sökmen, J. Phys. Condens. Matter, 2009, 21, (48), 485403 LINK https://doi.org/10.1088/0953-8984/21/48/485403
    [Google Scholar]
  19. K. Brugger, Phys. Rev., 1964, 133, (6A), A1611 LINK https://doi.org/10.1103/physrev.133.a1611
    [Google Scholar]
  20. S. Tripathi, D. Singh, R. K. Saluja, R. Vashisth, ‘Evaluation of Elastic, Mechanical, and Thermophysical Properties of Nanostructured Aluminides for Aviation Industries’, in “Recent Advances in Aerospace Engineering: Select Proceedings of MRAE 2023”, eds. S. Singh, P. J. Ramulu, S. S. Gautam, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2024 LINK https://doi.org/10.1007/978-981-97-1306-6_42
    [Google Scholar]
  21. W. Voigt, “Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik)”, Vieweg+Teubner Verlag, Wiesbaden, Germany, 1966, 979 pp LINK https://doi.org/10.1007/978-3-663-15884-4
    [Google Scholar]
  22. F. Birch, Phys. Rev., 1947, 71, (11), 809 LINK https://doi.org/10.1103/physrev.71.809
    [Google Scholar]
  23. O. L. Anderson, J. Phys. Chem. Solids, 1963, 24, (7), 909 LINK https://doi.org/10.1016/0022-3697(63)90067-2
    [Google Scholar]
  24. A. Singh, D. Singh, Z. Naturforsch. A, 2023, 78, (10), 947 LINK https://doi.org/10.1515/zna-2023-0138
    [Google Scholar]
  25. “American Institute of Physics Handbook”, 3rd Edn., ed. D. E. Gray, McGraw-Hill Book Co, New York, USA, 1972
    [Google Scholar]
  26. D. T. Morelli, G. A. Slack, ‘High Lattice Thermal Conductivity Solids’, in “High Thermal Conductivity Materials”, eds. S. L. Shinde, J. S. Goela, Springer, New York, 2006, pp. 3768 LINK https://doi.org/10.1007/0-387-25100-6_2
    [Google Scholar]
  27. W. P. Mason, ‘Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon’, in “Physical Acoustics”, ch. 6, Vol. 3, Part B: Lattice Dynamics, ed. W. P. Mason, Academic Press Inc, New York, USA, 1965, pp. 235286 LINK https://doi.org/10.1016/b978-0-12-395669-9.50013-8
    [Google Scholar]
  28. A. Akhiezer, J. Phys. USSR, 1939, 1, (1), 277
    [Google Scholar]
  29. H. E. Bömmel, K. Dransfeld, Phys. Rev. Lett., 1958, 1, (7), 234 LINK https://doi.org/10.1103/physrevlett.1.234
    [Google Scholar]
  30. M. P. Tosi, ‘Cohesion of Ionic Solids in the Born Model’, Solid State Physics, Vol. 16, eds. F. Seitz, D. Turnbull, Academic Press, New York, USA, 1964, pp. 1120 LINK https://doi.org/10.1016/s0081-1947(08)60515-9
    [Google Scholar]
  31. A. Singh, D. Singh, Johnson Matthey Technol. Rev., 2024, 68, (1), 49 LINK https://doi.org/10.1595/205651323x16902884637568
    [Google Scholar]
  32. A. Kumar, S. P. Singh, A. Singh, D. Singh, R. K. Thakur, A. K. Maddheshiya, Indian J. Phys., 2025, 99, (3), 871 LINK https://doi.org/10.1007/s12648-024-03334-w
    [Google Scholar]
  33. A. I. Gusev, S. I. Sadovnikov, Phys. Solid State, 2022, 64, (6), 659 LINK https://doi.org/10.21883/pss.2022.06.53829.292
    [Google Scholar]
  34. O. N. Senkov, D. B. Miracle, Sci. Rep., 2021, 11, 4531 LINK https://doi.org/10.1038/s41598-021-83953-z
    [Google Scholar]
  35. D. G. Pettifor, M. Aoki, Philos. Trans. R. Soc. A, 1991, 334, (1635), 439 LINK https://doi.org/10.1098/rsta.1991.0024
    [Google Scholar]
  36. D. G. Pettifor, Mater. Sci. Technol., 1992, 8, (4), 345 LINK https://doi.org/10.1179/026708392790170801
    [Google Scholar]
  37. B. Huang, Y.-H. Duan, W.-C. Hu, Y. Sun, S. Chen, Ceram. Int., 2015, 41, (5B), 6831 LINK https://doi.org/10.1016/j.ceramint.2015.01.132
    [Google Scholar]
  38. Q. Wu, S. Li, Comput. Mater. Sci., 2012, 53, (1), 436 LINK https://doi.org/10.1016/j.commatsci.2011.09.016
    [Google Scholar]
  39. C. S. G. Cousins, J. Phys. C Solid State Phys., 1971, 4, (10), 1117 LINK https://doi.org/10.1088/0022-3719/4/10/020
    [Google Scholar]
  40. H. Wang, M. Li, Phys. Rev. B, 2009, 79, (22), 224102 LINK https://doi.org/10.1103/physrevb.79.224102
    [Google Scholar]
  41. A. Singh, S. Tripathi, D. Singh, Mod. Phys. Lett. B, 2024, 38, (32), 2450280 LINK https://doi.org/10.1142/s0217984924502804
    [Google Scholar]
  42. S. Mori, Y. Hiki, J. Phys. Soc. Japan, 1978, 45, (5), 1449 LINK https://doi.org/10.1143/jpsj.45.1449
    [Google Scholar]
  43. D. Lazarus, Phys. Rev., 1949, 76, (4), 545 LINK https://doi.org/10.1103/physrev.76.545
    [Google Scholar]
  44. G. R. Barsch, Phys. Stat. Sol., 1967, 19, (1), 129 LINK https://doi.org/10.1515/9783112498286-016
    [Google Scholar]
  45. P. B. Ghate, Phys. Rev., 1965, 139, (5A), A1666 LINK https://doi.org/10.1103/physrev.139.a1666
    [Google Scholar]
  46. A. Singh, S. Tripathi, D. Singh, B. Jyoti, Eng. Appl. Sci. Res., 2024, 51, (3), 337 LINK https://doi.org/10.14456/easr.2024.32
    [Google Scholar]
  47. A. B. Bhatia, “Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids”, Oxford University Press Inc, New York, USA, 1967, p. 329
    [Google Scholar]
  48. J. K. D. Verma, B. D. Nag, P. S. Nair, Z. Naturforsch. A, 1964, 19, (13), 1561 LINK https://doi.org/10.1515/zna-1964-1319
    [Google Scholar]
  49. V. Bhalla, D. Singh, ‘Mechanical and Thermo-Physical Properties of Rare-Earth Materials’, in “Handbook of Metrology and Applications”, eds. D. K. Aswal, S. Yadav, T. Takatsuji, P. Rachakonda, H. Kumar, Springer, Singapore, 2022 LINK https://doi.org/10.1007/978-981-19-1550-5_40-1
    [Google Scholar]
  50. Y.-I. Hwang, D. Sung, H.-J. Kim, S.-J. Song, K.-B. Kim, S.-S. Kang, Sensors, 2020, 20, (21), 6259 LINK https://doi.org/10.3390/s20216259
    [Google Scholar]
  51. D. Singh, D. K. Pandey, P. K. Yadawa, Cent. Eur. J. Phys., 2009, 7, (1), 198 LINK https://doi.org/10.2478/s11534-008-0130-1
    [Google Scholar]
/content/journals/10.1595/205651325X17236415666329
Loading
/content/journals/10.1595/205651325X17236415666329
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test