Skip to content
1887
Volume 69, Issue 4
  • ISSN: 2056-5135
  • oa Bacterial Kinetics for Control of Shape and Biogenic Synthesis of Nanoparticles: A Review

    An environmentally friendly, scalable and economical process

  • Authors: Fathan Bahfie1, Erik Prasetyo2, Fajar Nurjaman1, Mulyono3, Heri Satria3, Slamet Sumardi1, Dewi Syahidah4, Bernadetta Rina Hastilestari5, Harta Haryadi1, Anton Sapto Handoko1, Suharto Suharto1, Lucky Darmawan1, Fahny Ardian6, Ulin Herlina1 and Diah Susanti7
  • 1 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung, 35361, Indonesia 2 Department of Chemical Engineering, Norwegian University of Science and Technology, Kjemi 4, Gløshaugen, N-7491, Trondheim, Norway 3 Department of Chemistry, University of Lampung, Bandar Lampung, Lampung, 35141, Indonesia 4 Research Center for Veterinary Science, National Research and Innovation Agency of Indonesia, Jl. R.E. Martadinata 30 Bogor, West Java, 16114, Indonesia 5 Research Center for Genetic Engineering, National Research and Innovation Agency of Indonesia, Raya Bogor Street KM 46, Cibinong, Bogor, West Java, 16911, Indonesia 6 Technology of Metallurgy, Bandung Energy and Mining Polytechnic, Jalan Jenderal Sudirman No. 623 Bandung, West Java, 40211, Indonesia 7 Material and Metallurgical Engineering Department, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Institute of Technology, Building MT 2nd Floor, ITS Sukolilo Campus, Surabaya, East Java, 60111, Indonesia
    *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 4, Oct 2025, p. 557 - 566
  • DOI: https://doi.org/10.1595/205651325X17364227730793
    • Received: 24 Sep 2024
    • Accepted: 06 Jan 2025

Abstract

Nanoparticles (NPs) have many applications, such as in health and agriculture. One of these essential NPs is silver, which can be applied for drug delivery like encapsulation. Silver NPs (AgNPs) have excellent antibacterial activity. In addition, silver synthesis can be explored by electrochemical approaches on bacterium after exposure to silver. The synthesis of NPs can be achieved by biogenic synthesis, for instance, , silver-resistant psychrophilic bacteria. is a bacterium with the same character as for synthesising AgNPs. The ability of was expressed due to its specificity to maintain high deliberation of silver through the cell synthesis of rounded AgNPs and its ability to grow at lower temperatures (psychros: cold) in the range of 0–30°C. Anisotropy of AgNPs can be attained by controlling the bacteria growth kinetics. This synthesis system can be employed in a green biosynthetic approach to achieve shape control of NPs in an environmentally friendly, scalable and economical process. This review discusses for controlling shape and biogenic synthesis with related aspects such as the synthesis mechanism, the influencing factors like shape and size, the application method and its development.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17364227730793
2025-10-01
2025-10-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/4/Bahfie6_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17364227730793&mimeType=html&fmt=ahah

References

  1. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Molecules, 2015, 20, (5), 8856 LINK https://doi.org/10.3390/molecules20058856
    [Google Scholar]
  2. S. Jana, T. Pal, J. Nanosci. Nanotechnol., 2007, 7, (6), 2151 LINK https://doi.org/10.1166/jnn.2007.785
    [Google Scholar]
  3. R. Stiufiuc, C. Iacovita, C. M. Lucaciu, G. Stiufiuc, A. G. Dutu, C. Braescu, N. Leopold, Nanoscale Res. Lett., 2013, 8, (1), 47 LINK https://doi.org/10.1186/1556-276X-8-47
    [Google Scholar]
  4. M. P. Konrad, A. P. Doherty, S. E. J. Bell, Anal. Chem., 2013, 85, (14), 6783 LINK https://doi.org/10.1021/ac4008607
    [Google Scholar]
  5. G. M. Meheretu, D. Cialla, J. Popp, Int. J. Biochem. Biophys., 2014, 2, (4), 63 LINK https://doi.org/10.13189/ijbb.2014.020403
    [Google Scholar]
  6. G. A. Evtugyn, R. V. Shamagsumova, P. V. Padnya, I. I. Stoikov, I. S. Antipin, Talanta, 2014, 127, 9 LINK https://doi.org/10.1016/j.talanta.2014.03.048
    [Google Scholar]
  7. N. T. K. Thanh, L. A. W. Green, Nano Today, 2010, 5, (3), 213 LINK https://doi.org/10.1016/j.nantod.2010.05.003
    [Google Scholar]
  8. N. Alon, Y. Miroshnikov, N. Perkas, I. Nissan, A. Gedanken, O. Shefi, Int. J. Nanomedicine, 2014, 9, (Supplement 1), 23 LINK https://doi.org/10.2147/IJN.S45639
    [Google Scholar]
  9. F. Bahfie, A. Manaf, W. Astuti, F. Nurjaman, E. Prasetyo, Y. Triapriani, D. Susanti, Prog. Phys. Met., 2023, 24, (1), 173
    [Google Scholar]
  10. Y. Luo, L. Ma, X. Zhang, A. Liang, Z. Jiang, Nanoscale Res. Lett., 2015, 10, (1), 230 LINK https://doi.org/10.1186/s11671-015-0937-9
    [Google Scholar]
  11. P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias, F. J. Arregui, Sens. Actuators B Chem., 2013, 187, 40 LINK https://doi.org/10.1016/j.snb.2012.09.022
    [Google Scholar]
  12. S. Tsuruga, T. Abe, ‘Preparation of Electro-Conductive Inkjet Inks Through Silver Halide Photographic Emulsion’, Pan-Pacific Imaging Conference, Tokyo, Japan, 25th–27th June, 2008, The Imaging Society of Japan, Tokyo, Japan, 2008, pp. 5659
    [Google Scholar]
  13. S. Iwama, T. Sahashi, Jpn. J. Appl. Phys., 1980, 19, (6), 1039 LINK https://doi.org/10.1143/jjap.19.1039
    [Google Scholar]
  14. I. Sondi, D. V. Goia, E. Matijević, J. Colloid Interface Sci., 2003, 260, (1), 75 LINK https://doi.org/10.1016/s0021-9797(02)00205-9
    [Google Scholar]
  15. M. Fulton, J. Bacteriol., 1943, 46, (1), 79 LINK https://doi.org/10.1128/jb.46.1.79-82.1943
    [Google Scholar]
  16. D. J. Brenner, J. J. Farmer, G. R. Fanning, A. G. Steigerwalt, P. Klykken, H. G. Wathen, F. W. Hickman, W. H. Ewing, Int. J. Syst. Bacteriol., 1978, 28, (2), 269 LINK https://doi.org/10.1099/00207713-28-2-269
    [Google Scholar]
  17. K. Truberg Jensen, W. Frederiksen, F. W. Hickman-Brenner, A. G. Steigerwalt, C. F. Riddle, D. J. Brenner, Int. J. Syst. Bacteriol., 1992, 42, (4), 613 LINK https://doi.org/10.1099/00207713-42-4-613
    [Google Scholar]
  18. J. M. Janda, S. L. Abbott, ‘Genus XXl. Morganella Fulton 1943, 81AL, in “Bergey’s Manual® of Systematic Bacteriology”, 2nd Edn., eds. D. J. Brenner, N. R. Krieg, J. T. Staley, Vol. 2, Part B, Springer, New York, USA, 2003, pp. 707709
    [Google Scholar]
  19. L. Lehane, J. Olley, Int. J. Food Microbiol., 2000, 58, (1–2), 1 LINK https://doi.org/10.1016/s0168-1605(00)00296-8
    [Google Scholar]
  20. K. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, R. A. A. Ammar, Arab. J. Chem., 2010, 3, (3), 135 LINK https://doi.org/10.1016/j.arabjc.2010.04.008
    [Google Scholar]
  21. A. B. Smetana, K. J. Klabunde, C. M. Sorensen, J. Colloid Interface Sci., 2005, 284, (2), 521 LINK https://doi.org/10.1016/j.jcis.2004.10.038
    [Google Scholar]
  22. D. Wakuda, K.-S. Kim, K. Suganuma, Scr. Mater., 2008, 59, (6), 649 LINK https://doi.org/10.1016/j.scriptamat.2008.05.028
    [Google Scholar]
  23. H.-H. Lee, K.-S. Chou, K.-C. Huang, Nanotechnology, 2005, 16, (10), 2436 LINK https://doi.org/10.1088/0957-4484/16/10/074
    [Google Scholar]
  24. A. Zielińska, E. Skwarek, A. Zaleska, M. Gazda, J. Hupka, Procedia Chem., 2009, 1, (2), 1560 LINK https://doi.org/10.1016/j.proche.2009.11.004
    [Google Scholar]
  25. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Res. Pharm. Sci., 2014, 9, (6), 385 LINK https://pmc.ncbi.nlm.nih.gov/articles/PMC4326978/
    [Google Scholar]
  26. K. Toisawa, Y. Hayashi, H. Takizawa, Mater. Trans., 2010, 51, (10), 1764 LINK https://doi.org/10.2320/matertrans.mj201005
    [Google Scholar]
  27. A. S. Gurav, T. T. Kodas, L.-M. Wang, E. I. Kauppinen, J. Joutsensaari, Chem. Phys. Lett., 1994, 218, (4), 304 LINK https://doi.org/10.1016/0009-2614(93)e1491-x
    [Google Scholar]
  28. F. E. Kruis, H. Fissan, B. Rellinghaus, Mater. Sci. Eng. B, 2000, 69–70, 329 LINK https://doi.org/10.1016/s0921-5107(99)00298-6
    [Google Scholar]
  29. M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, L. Samuelson, J. Nanoparticle Res., 1999, 1, (2), 243 LINK https://doi.org/10.1023/a:1010012802415
    [Google Scholar]
  30. J. Natsuki, T. Natsuki, Y. Hashimoto, Int. J. Mater. Sci. Appl., 2015, 4, (5), 325 LINK https://doi.org/10.11648/j.ijmsa.20150405.17
    [Google Scholar]
  31. T. Natsuki, J. Natsuki, Int. J. Mater. Eng. Technol., 2015, 13, (1), 109 LINK https://doi.org/10.17654/ijmetjan2015_109_119
    [Google Scholar]
  32. S. He, J. Yao, S. Xie, H. Gao, S. Pang, J. Phys. D Appl. Phys., 2001, 34, (24), 3425 LINK https://doi.org/10.1088/0022-3727/34/24/301
    [Google Scholar]
  33. M. Bosetti, A. Massè, E. Tobin, M. Cannas, Biomaterials, 2002, 23, (3), 887 LINK https://doi.org/10.1016/s0142-9612(01)00198-3
    [Google Scholar]
  34. P. Jain, T. Pradeep, Biotechnol. Bioeng., 2005, 90, (1), 59 LINK https://doi.org/10.1002/bit.20368
    [Google Scholar]
  35. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, P. J. J. Alvarez, Water Res., 2008, 42, (18), 4591 LINK https://doi.org/10.1016/j.watres.2008.08.015
    [Google Scholar]
  36. M. Cho, H. Chung, W. Choi, J. Yoon, Appl. Environ. Microbiol., 2005, 71, (1), 270 LINK https://doi.org/10.1128/AEM.71.1.270-275.2005
    [Google Scholar]
  37. S. Y. Yeo, H. J. Lee, S. H. Jeong, J. Mater. Sci., 2003, 38, (10), 2143 LINK https://doi.org/10.1023/a:1023767828656
    [Google Scholar]
  38. N. Kumar, R. K. Salar, R. Kumar, M. Prasad, B. Brar, V. Nain, Nano Trends J. Nanotech. Appl., 2017, 19, (3), 1 LINK https://techjournals.stmjournals.in/index.php/NTs/article/view/46
    [Google Scholar]
  39. C. A. Antonyraj, J. Jeong, B. Kim, S. Shin, S. Kim, K.-Y. Lee, J. K. Cho, J. Ind. Eng. Chem., 2013, 19, (3), 1056 LINK https://doi.org/10.1016/j.jiec.2012.12.002
    [Google Scholar]
  40. F. Neville, N. A. Pchelintsev, M. J. F. Broderick, T. Gibson, P. A. Millner, Nanotechnology, 2009, 20, (5), 055612 LINK https://doi.org/10.1088/0957-4484/20/5/055612
    [Google Scholar]
  41. S. S. Staniland, ‘Magnetosomes: Bacterial Biosynthesis of Magnetic Nanoparticles and Potential Biomedical Applications’ in “Nanotechnologies for the Life Sciences”, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007 LINK https://doi.org/10.1002/9783527610419.ntls0173
    [Google Scholar]
  42. H. Fu, X. Yang, X. Jiang, A. Yu, Langmuir, 2013, 29, (23), 7134 LINK https://doi.org/10.1021/la400753q
    [Google Scholar]
  43. S. J. Kwon, A. J. Bard, J. Am. Chem. Soc., 2012, 134, (26), 10777 LINK https://doi.org/10.1021/ja304074f
    [Google Scholar]
  44. N. Roy, A. Gaur, A. Jain, S. Bhattacharya, V. Rani, Environ. Toxicol. Pharmacol., 2013, 36, (3), 807 LINK https://doi.org/10.1016/j.etap.2013.07.005
    [Google Scholar]
  45. X. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Electroanalysis, 2006, 18, (4), 319 LINK https://doi.org/10.1002/elan.200503415
    [Google Scholar]
  46. [Google Scholar]
  47. Y. Xia, H. Yang, C. T. Campbell, Acc. Chem. Res., 2013, 46, (8), 1671 LINK https://doi.org/10.1021/ar400148q
    [Google Scholar]
  48. D. Sharma, S. Kanchi, K. Bisetty, Arab. J. Chem., 2019, 12, (8), 3576 LINK https://doi.org/10.1016/j.arabjc.2015.11.002
    [Google Scholar]
  49. S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K. M. Fromm, Chem. Rev., 2013, 113, (7), 4708 LINK https://doi.org/10.1021/cr300288v
    [Google Scholar]
  50. J. Feng, R. B. Pandey, R. J. Berry, B. L. Farmer, R. R. Naik, H. Heinz, Soft Matter, 2011, 7, (5), 2113 LINK https://doi.org/10.1039/c0sm01118e
    [Google Scholar]
  51. W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, Y. H. Park, Appl. Environ. Microbiol., 2008, 74, (7), 2171 LINK https://doi.org/10.1128/AEM.02001-07
    [Google Scholar]
  52. J. Emborg, P. Dalgaard, P. Ahrens, Int. J. Syst. Evol. Microbiol., 2006, 56, (10), 2473 LINK https://doi.org/10.1099/ijs.0.64357-0
    [Google Scholar]
  53. R. Ramanathan, A. P. O’Mullane, R. Y. Parikh, P. M. Smooker, S. K. Bhargava, V. Bansal, Langmuir, 2011, 27, (2), 714 LINK https://doi.org/10.1021/la1036162
    [Google Scholar]
  54. R. Y. Parikh, S. Singh, B. L. V. Prasad, M. S. Patole, M. Sastry, Y. S. Shouche, ChemBioChem, 2008, 9, (9), 1415 LINK https://doi.org/10.1002/cbic.200700592
    [Google Scholar]
  55. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, C. A. Mirkin, Small, 2009, 5, (6), 646 LINK https://doi.org/10.1002/smll.200801480
    [Google Scholar]
  56. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater., 2004, 3, (7), 482 LINK https://doi.org/10.1038/nmat1152
    [Google Scholar]
  57. K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Nanomed. Nanotechnol. Biol. Med., 2010, 6, (2), 257 LINK https://doi.org/10.1016/j.nano.2009.07.002
    [Google Scholar]
/content/journals/10.1595/205651325X17364227730793
Loading
/content/journals/10.1595/205651325X17364227730793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test