Skip to content
1887
Volume 69, Issue 4
  • ISSN: 2056-5135
  • oa A Review on the Production of Sustainable Aviation Fuels from Biomass and Wastes using Pyrolysis Technologies: Part II

    Reactors and remaining challenges

  • Authors: M. A. Rony1, M. T. Rangon2 and M. N. Uddin2,3
  • 1 Department of MCS, Washington University of Virginia, 4300 Evergreen Ln, Annandale, VA 22003, Virginia, USA 2 Department of Electrical and Electronic Engineering, Northern University Bangladesh, 111/2 Kawlar Jame Mosjid Road, Ashkona, Dakshinkhan, Dhaka 1230, Bangladesh 3 Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
    *[email protected]; [email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 4, Oct 2025, p. 546 - 556
  • DOI: https://doi.org/10.1595/205651325X17497274824204
    • Received: 02 Oct 2024
    • Accepted: 03 Mar 2025

Abstract

Part II of this review examines the current state and forthcoming obstacles of the pyrolysis process in addition to the diverse array of pyrolysis byproducts. Based on this research, it can be inferred that the characteristics of pyrolysis products are influenced by the diversity of materials utilised. Furthermore, pyrolysis products, such as bio-oil, have the potential to make a lucrative contribution to the expanding economy. To overcome future problems, further exploration is ultimately necessary. The primary factors of significance in pyrolysis technology are government subsidies and scientific advancements. The discussion emphasises the significant barriers posed by the energy efficiency and capital costs involved in converting biomass and residual wastes into aviation fuels, hindering widespread adoption. To meet the aviation industry’s greenhouse gas reduction targets by 2050, there is a pressing need for further advancements in technology development, highlighting the critical role of advanced technologies in overcoming these barriers.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17497274824204
2025-10-01
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/4/Uddin_13a_Imp-Pt2.html?itemId=/content/journals/10.1595/205651325X17497274824204&mimeType=html&fmt=ahah

References

  1. M. N. Uddin, M. T. Rangon, Johnson Matthey Technol. Rev., 2025, 69, (4), 536 LINK https://doi.org/10.1595/205651325X17411019785188
    [Google Scholar]
  2. M. M. Hasan, M. G. Rasul, M. I. Jahirul, M. M. K. Khan, Energies, 2024, 17, (12), 2914 LINK https://doi.org/10.3390/en17122914
    [Google Scholar]
  3. M. Bartoli, L. Rosi, M. Frediani, ‘From Waste to Chemicals: Bio-Oils Production Through Microwave-Assisted Pyrolysis’, in “Production of Biofuels and Chemicals with Pyrolysis”, eds. Z. Fang, R. L. Smith Jr, L. Xu, Biofuels and Biorefineries, vol. 10, Springer, Singapore, 2020 LINK https://doi.org/10.1007/978-981-15-2732-6_8
    [Google Scholar]
  4. F. Dabai, N. Paterson, M. Millan, P. Fennell, R. Kandiyoti, Energy Fuels, 2010, 24, (8), 4560 LINK https://doi.org/10.1021/EF100681U
    [Google Scholar]
  5. S. M. Nunes, N. Paterson, A. A. Herod, D. R. Dugwell, R. Kandiyoti, Energy Fuels, 2008, 22, (3), 1955 LINK https://doi.org/10.1021/EF700662G
    [Google Scholar]
  6. S. M. Nunes, N. Paterson, D. R. Dugwell, R. Kandiyoti, Energy Fuels, 2007, 21, (5), 3028 LINK https://doi.org/10.1021/EF070137B
    [Google Scholar]
  7. G. G. Silva, N. P. Jiménez, O. F. Salazar, ‘Fluid Dynamics of Gas - Solid Fluidized Beds’, in “Advanced Fluid Dynamics”, ed. H. W. Oh, InTech Europe, Rijeka, Croatia, 2012 LINK https://doi.org/10.5772/25791
    [Google Scholar]
  8. P. Mankeed, N. Khuenkaeo, F. R. Malik, N. Tippayawong, Eng. Technol. Appl. Sci. Res., 2023, 13, (2), 10301 LINK https://doi.org/10.48084/etasr.5621
    [Google Scholar]
  9. G. V. C. Peacocke, C. M. Dick, R. A. Hague, L. A. Cooke, A. V. Bridgwater, ‘Comparison of Ablative and Fluid Bed Fast Pyrolysis Products: Yields and Analyses’, in “Developments in Thermochemical Biomass Conversion”, eds. A. V. Bridgwater, D. G. B. Boocock, Springer, Dordrecht, The Netherlands, 1997 LINK https://doi.org/10.1007/978-94-009-1559-6_14
    [Google Scholar]
  10. F. Rego, H. Xiang, Y. Yang, J. L. Ordovás, K. Chong, J. Wang, A. Bridgwater, J. Anal. Appl. Pyrolysis, 2022, 161, 105378 LINK https://doi.org/10.1016/j.jaap.2021.105378
    [Google Scholar]
  11. F. Campuzano, R. C. Brown, J. D. Martínez, Renew. Sustain. Energy Rev., 2019, 102, 372 LINK https://doi.org/10.1016/J.RSER.2018.12.014
    [Google Scholar]
  12. Sukamto, D. Samanhudi, Sunardi, N. D. Siswati, MATEC Web Conf., 2016, 58, 01015 LINK https://doi.org/10.1051/MATECCONF/20165801015
    [Google Scholar]
  13. H. Wiinikka, P. Carlsson, A.-C. Johansson, M. Gullberg, C. Ylipää, M. Lundgren, L. Sandström, Energy Fuels, 2015, 29, (5), 3158 LINK https://doi.org/10.1021/ACS.ENERGYFUELS.5B00174
    [Google Scholar]
  14. T. E. Odetoye, J. O. Titiloye, ‘Biomass Conversion by Pyrolysis Technology’, in “Valorization of Biomass to Value-Added Commodities”, eds. M. Daramola, A. Ayeni, Green Energy and Technology, Springer, Cham, Switzerland, 2020 LINK https://doi.org/10.1007/978-3-030-38032-8_15
    [Google Scholar]
  15. M. Gupta, A. McFarlan, L. Nguyen, F. Preto, E3S Web Conf., 2018, 61, 00016 LINK https://doi.org/10.1051/E3SCONF/20186100016
    [Google Scholar]
  16. F. C. Luz, S. Cordiner, A. Manni, V. Mulone, V. Rocco, Energy, 2018, 157, 792 LINK https://doi.org/10.1016/J.ENERGY.2018.05.166
    [Google Scholar]
  17. G. Fadillah, I. Fatimah, I. Sahroni, M. M. Musawwa, T. M. I. Mahlia, O. Muraza, Catalysts, 2021, 11, (7), 837 LINK https://doi.org/10.3390/CATAL11070837
    [Google Scholar]
  18. R. Mishra, A. Kumar, E. Singh, S. Kumar, ACS Sustain. Chem. Eng., 2023, 11, (6), 2033 LINK https://doi.org/10.1021/acssuschemeng.2c05759
    [Google Scholar]
  19. A.R. Palanivelrajan, M. Feroskhan, Mater. Today Proc., 2023, 84, 47 LINK https://doi.org/10.1016/j.matpr.2023.04.676
    [Google Scholar]
  20. Y. Peng, Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, R. Ruan, Energy Convers. Manage., 2022, 254, 115243 LINK https://doi.org/10.1016/j.enconman.2022.115243
    [Google Scholar]
  21. D. K. Ratnasari, M. A. Nahil, P. T. Williams, J. Anal. Appl. Pyrolysis, 2017, 124, 631 LINK https://doi.org/10.1016/J.JAAP.2016.12.027
    [Google Scholar]
  22. R. Miandad, M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. I. Ismail, J. Dhavamani, J. Gardy, A. Hassanpour, A.-S. Nizami, Front. Energy Res., 2019, 7, 27 LINK https://doi.org/10.3389/FENRG.2019.00027
    [Google Scholar]
  23. A. Sowinski, F. Salama, P. Mehrani, J. Electrostat., 2009, 67, (4), 568 LINK https://doi.org/10.1016/J.ELSTAT.2008.11.005
    [Google Scholar]
  24. M. N. Uddin, M. A. Rahman, J. Taweekun, K. Techato, M. Mofijur, M. Rasul, Energy Procedia, 2019, 160, 670 LINK https://doi.org/10.1016/j.egypro.2019.02.220
    [Google Scholar]
  25. Y.-H. Lin, M.-H. Yang, T.-F. Yeh, M.-D. Ger, Polym. Degrad. Stab., 2004, 86, (1), 121 LINK https://doi.org/10.1016/j.polymdegradstab.2004.02.015
    [Google Scholar]
  26. A. Anderson, A. Karthikeyan, C. K. Ramesh, S. Ramachandran, T. R. Praveenkumar, Aircr. Eng. Aerosp. Technol., 2020, 93, (3), 502 LINK https://doi.org/10.1108/aeat-07-2020-0135
    [Google Scholar]
  27. J. A. Okolie, A. Mukherjee, S. Nanda, A. K. Dalai, J. A. Kozinski, Int. J. Energy Res., 2021, 45, 14145 LINK https://doi.org/10.1002/er.6697
    [Google Scholar]
  28. J. A. Okolie, E. I. Epelle, M. E. Tabat, U. Orivri, A. N. Amenaghawon, P. U. Okoye, B. Gunes, Process Saf. Environ. Prot., 2022, 159, 323 LINK https://doi.org/10.1016/j.psep.2021.12.049
    [Google Scholar]
  29. D. C. Elliott, WIREs Energy Environ., 2013, 2, (5), 525 LINK https://doi.org/10.1002/wene.74
    [Google Scholar]
  30. W. Mateo, H. Lei, E. Villota, M. Qian, Y. Zhao, E. Huo, Q. Zhang, X. Lin, C. Wang, Z. Huang, Bioresour. Technol., 2020, 297, 122411 LINK https://doi.org/10.1016/j.biortech.2019.122411
    [Google Scholar]
  31. J. Wang, P. Bi, Y. Zhang, H. Xue, P. Jiang, X. Wu, J. Liu, T. Wang, Q. Li, Energy, 2015, 86, 488 LINK https://doi.org/10.1016/j.energy.2015.04.053
    [Google Scholar]
  32. Y.-K. Chen, C.-H. Lin, W.-C. Wang, Energy, 2020, 201, 117655 LINK https://doi.org/10.1016/j.energy.2020.117655
    [Google Scholar]
  33. A. Galadima, O. Muraza, Energy Convers. Manag., 2015, 105, 338 LINK https://doi.org/10.1016/j.enconman.2015.07.078
    [Google Scholar]
  34. S. van Dyk, J. Su, M. Ebadian, D. O’Connor, M. Lakeman, J. J. Saddler, Biotechnol. Biofuels, 2019, 12, 281 LINK https://doi.org/10.1186/s13068-019-1625-2
    [Google Scholar]
  35. J. A. Okolie, D. Awotoye, M. E. Tabat, P. U. Okoye, E. I. Epelle, C. C. Ogbaga, F. Güleç, B. Oboirien, iScience, 2023, 26, (6), 106944 LINK https://doi.org/10.1016/j.isci.2023.106944
    [Google Scholar]
  36. S. Michailos, A. Bridgwater, Int. J. Energy Res., 2019, 43, 7206 LINK https://doi.org/10.1002/er.4745
    [Google Scholar]
  37. A. V. Bridgwater, Chem. Eng. J., 2003, 91, (2–3), 87 LINK https://doi.org/10.1016/s1385-8947(02)00142-0
    [Google Scholar]
  38. A. V. Bridgwater, “Fast Pyrolysis of Biomass: A Handbook”, 2nd Edn., eds. S. Czernik, J. Diebold, D. Meier, A. Oasmaa, C. Peacocke, J. X. Piskorz, CPL Press, Glasgow, UK, 2008, 196 pp
  39. A. V. Bridgwater, Environ. Prog. Sustain. Energy, 2012, 31, (2), 261 LINK https://doi.org/10.1002/ep.11635
    [Google Scholar]
  40. D. Chiaramonti, M. Prussi, M. Buffi, D. Tacconi, Appl. Energy, 2014, 136, 767 LINK https://doi.org/10.1016/j.apenergy.2014.08.065
    [Google Scholar]
  41. W.-C. Wang, Renew. Energy, 2016, 95, 63 LINK https://doi.org/10.1016/j.renene.2016.03.107
    [Google Scholar]
  42. M. A. Bashir, S. Lima, H. Jahangiri, A. J. Majewski, M. Hofmann, A. Hornung, M. Ouadi, J. Anal. Appl. Pyrolysis, 2022, 163, 105498 LINK https://doi.org/10.1016/j.jaap.2022.105498
    [Google Scholar]
  43. A. Trubetskaya, L. von Berg, R. Johnson, S. Moore, J. J. Leahy, Y. Han, H. Lange, A. Anca-Couce, J. Anal. Appl. Pyrolysis, 2023, 169, 105841 LINK https://doi.org/10.1016/j.jaap.2022.105841
    [Google Scholar]
  44. A. Gunerhan, O. Altuntas, H. Caliskan, Energy, 2023, 276, 127566 LINK https://doi.org/10.1016/j.energy.2023.127566
    [Google Scholar]
  45. S. Wang, H. Yang, Z. Shi, I. N. Zaini, Y. Wen, J. Jiang, P. G. Jönsson, W. Yang, Energy, 2022, 252, 124056 LINK https://doi.org/10.1016/j.energy.2022.124056
    [Google Scholar]
/content/journals/10.1595/205651325X17497274824204
Loading
/content/journals/10.1595/205651325X17497274824204
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): biomass; greenhouse gas; jet fuel; pyrolysis; Sustainable aviation fuel; waste
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test