Skip to content
1887
Volume 69, Issue 4
  • ISSN: 2056-5135
  • oa A Review on the Production of Sustainable Aviation Fuels from Biomass and Wastes using Pyrolysis Technologies: Part I

    Processes and products

  • Authors: M. A. Rony1, M. T. Rangon2 and M. N. Uddin2,3
  • 1 Department of MCS, Washington University of Virginia, 4300 Evergreen Ln, Annandale, VA 22003, Virginia, USA 2 Department of Electrical and Electronic Engineering, Northern University Bangladesh, 111/2 Kawlar Jame Mosjid Road, Ashkona, Dakshinkhan, Dhaka 1230, Bangladesh 3 Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
    *[email protected]; [email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 4, Oct 2025, p. 536 - 545
  • DOI: https://doi.org/10.1595/205651325X17411019785188
    • Received: 02 Oct 2024
    • Accepted: 03 Mar 2025

Abstract

This two-part review delves into the production of sustainable aviation fuels (SAF) derived from biomass and residual wastes through pyrolysis. Part I addresses the challenges associated with the pyrolysis of wastes and provides an overview of both conventional and emerging pyrolysis technologies, the diverse forms of biomass and its significant economic benefits on a global scale. Approximately half of the global population relies on biomass as their primary energy source. Three types of biomass energy are biogas, bio-liquid and bio-solid. In the domains of transportation and energy, it can serve as a substitute for fossil fuels. The primary focus of this study is to examine the data, explore the potential of biomass and analyse the mechanisms of pyrolysis carried out using various processes, technologies (such as pyrolysis speed and temperature) and different types of reactors to produce bio-oil.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17411019785188
2025-10-01
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/4/Uddin_13a_Imp-Pt1.html?itemId=/content/journals/10.1595/205651325X17411019785188&mimeType=html&fmt=ahah

References

  1. N. A. A. Howarth, A. Foxall, Polit. Geogr., 2010, 29, (3), 167 LINK https://doi.org/10.1016/j.polgeo.2010.03.001
    [Google Scholar]
  2. Y. Uemichi, M. Hattori, T. Itoh, J. Nakamura, M. Sugioka, Ind. Eng. Chem. Res., 1998, 37, (3), 867 LINK https://doi.org/10.1021/ie970605c
    [Google Scholar]
  3. M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, N. Ashwath, Energies, 2012, 5, (12), 4952 LINK https://doi.org/10.3390/en5124952
    [Google Scholar]
  4. S. Dharma, H. H. Masjuki, H. C. Ong, A. H. Sebayang, A. S. Silitonga, F. Kusumo, T. M. I. Mahlia, Energy Convers. Manag., 2016, 115, 178 LINK https://doi.org/10.1016/j.enconman.2016.02.034
    [Google Scholar]
  5. F. Kusumo, A. S. Silitonga, H. H. Masjuki, H. C. Ong, J. Siswantoro, T. M. I. Mahlia, Energy, 2017, 134, 24 LINK https://doi.org/10.1016/j.energy.2017.05.196
    [Google Scholar]
  6. M. M. Hasan, M. G. Rasul, M. I. Jahirul, M. M. K. Khan, Energies, 2024, 17, (12), 2914 LINK https://doi.org/10.3390/en17122914
    [Google Scholar]
  7. A. Demirbaş, Energy Convers. Manag., 2002, 43, (14), 1801 LINK https://doi.org/10.1016/s0196-8904(01)00137-6
    [Google Scholar]
  8. L. M. Das, R. Gulati, P. K. Gupta, Int. J. Hydrogen Energy, 2000, 25, (8), 783 LINK https://doi.org/10.1016/s0360-3199(99)00103-2
    [Google Scholar]
  9. ‘Net-Zero Carbon Emissions by 2050’, International Air Transport Association, Geneva, Switzerland, 4th October, 2021
  10. L. Tang, H. Huang, Energy Fuels, 2005, 19, (3), 1174 LINK https://doi.org/10.1021/ef049835b
    [Google Scholar]
  11. Y.-H. Lin, M.-H. Yang, T.-F. Yeh, M.-D. Ger, Polym. Degrad. Stab., 2004, 86, (1), 121 LINK https://doi.org/10.1016/j.polymdegradstab.2004.02.015
    [Google Scholar]
  12. “Biochar for Environmental Management”, 2nd Edn., eds. J. Lehmann, S. Joseph, Routledge, New York, USA, 2015, 976 pp LINK https://doi.org/10.4324/9780203762264
  13. M. F. Shahriar, A. Khanal, Fuel, 2022, 325, 124905 LINK https://doi.org/10.1016/j.fuel.2022.124905
    [Google Scholar]
  14. A. Yulianto, W. Trisunaryanti, T. Triyono, A. J. Saviola, K. Wijaya, I. Kartini, S. Purwono, R. Rodiansono, A. Mara, Case Stud. Chem. Environ. Eng., 2024, 10, 100894 LINK https://doi.org/10.1016/j.cscee.2024.100894
    [Google Scholar]
  15. I. Purnama, W. Trisunaryanti, K. Wijaya, A. Mutamima, W.-C. Oh, R. Boukherroub, M. Aziz, Energy Technol., 2023, 12, (2), 2300901 LINK https://doi.org/10.1002/ente.202300901
    [Google Scholar]
  16. L. Wang, C. L. Weller, D. D. Jones, M. A. Hanna, Biomass Bioenergy, 2008, 32, (7), 573 LINK https://doi.org/10.1016/j.biombioe.2007.12.007
    [Google Scholar]
  17. S. Chopra, A. K. Jain, Agric. Eng. Int. CIGR J., 2007, 9, (5), 1 LINK https://cigrjournal.org/index.php/Ejounral/article/view/960
    [Google Scholar]
  18. S. N. Barker, Energy Convers. Manag., 1996, 37, (6–8), 861 LINK https://doi.org/10.1016/0196-8904(95)00269-3
    [Google Scholar]
  19. P. De Filippis, C. Borgianni, M. Paolucci, F. Pochetti, Biomass Bioenergy, 2004, 27, (3), 247 LINK https://doi.org/10.1016/j.biombioe.2003.11.009
    [Google Scholar]
  20. P. R. R. Martini, ‘Conversão Pirolítica de Bagaço Residual da Indústria de Suco de Laranja e Caracterização Química dos Produtos’, PhD Thesis, Universidade Federal de Santa Maria (UFSM), Brazil, 2009
  21. P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen, J. X. Zhu, Bioresour. Technol., 2004, 95, (1), 95 LINK https://doi.org/10.1016/j.biortech.2004.02.003
    [Google Scholar]
  22. B. S. Pathak, ‘Biomass to Power Rural Development’, National Seminar on Biomass Based Decentralized Power Generation, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, India, 2005, pp. 16
    [Google Scholar]
  23. X. Wang, ‘Biomass Fast Pyrolysis in a Fluidized Bed’, PhD Thesis, University of Twente, Enscheda, The Netherlands, 2006, 200 pp LINK https://ris.utwente.nl/ws/portalfiles/portal/6070092/thesis_Wang.pdf
  24. S. S. Lam, A. D. Russell, H. A. Chase, Energy, 2010, 35, (7), 2985 LINK https://doi.org/10.1016/j.energy.2010.03.033
    [Google Scholar]
  25. J. Corella, A. Sanz, Fuel Process. Technol., 2005, 86, (9), 1021 LINK https://doi.org/10.1016/j.fuproc.2004.11.013
    [Google Scholar]
  26. A. Sanz, J. Corella, Fuel Process. Technol., 2006, 87, (3), 247 LINK https://doi.org/10.1016/j.fuproc.2005.08.003
    [Google Scholar]
  27. R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, D. Liu, J. Anal. Appl. Pyrolysis, 2001, 5859, 813 LINK https://doi.org/10.1016/s0165-2370(00)00207-2
    [Google Scholar]
  28. S. B. Jones, L. J. Snowden-Swan, ‘Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017’, Pacific Northewest National Laboratory, Washington, USA, February, 2013 LINK https://doi.org/10.2172/1111230
  29. O. Mašek, P. Brownsort, A. Cross, S. Sohi, Fuel, 2013, 103, 151 LINK https://doi.org/10.1016/j.fuel.2011.08.044
    [Google Scholar]
  30. D. Mohan, C. U. Pittman Jr, P. H. Steele, Energy Fuels, 2006, 20, (3), 848 LINK https://doi.org/10.1021/ef0502397
    [Google Scholar]
  31. E. A. Bramer, M. R. Holthuis, ‘Clean Liquid Fuel through Flash Pyrolysis’ in “The Development of the PyRos Process AFTUR Final Report”, University of Twente, Enschede, The Netherlands, 2005
    [Google Scholar]
  32. M. Verma, S. Godbout, S. K. Brar, O. Solomatnikova, S. P. Lemay, J. P. Larouche, Int. J. Chem. Eng., 2012, 2012, (1), 542426 LINK https://doi.org/10.1155/2012/542426
    [Google Scholar]
  33. T. Bridgewater, ‘Biomass Pyrolysis’, IEA Bioenergy, Birmingham, UK, 2007
  34. D. C. Dayton, B. Turk, R. Gupta, ‘Syngas Cleanup, Conditioning, and Utilization’ In “Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power”, 2nd Edn, eds. R. C. Brown, ch. 5, John Wiley & Sons Ltd, Chichester, UK, 2019, pp. 125174 LINK https://doi.org/10.1002/9781119417637.ch5
    [Google Scholar]
  35. H. Nam, S. C. Capareda, N. Ashwath, J. Kongkasawan, Energy, 2015, 93, (2), 2384 LINK https://doi.org/10.1016/j.energy.2015.10.028
    [Google Scholar]
  36. B. M. Q. Phan, L. T. Duong, V. D. Nguyen, T. B. Tran, M. H. H. Nguyen, L. H. Nguyen, D. A. Nguyen, L. C. Luu, Biomass Bioenergy, 2014, 62, 74 LINK https://doi.org/10.1016/j.biombioe.2014.01.012
    [Google Scholar]
  37. J. I. Montoya, C. Valdés, F. Chejne, C. A. Gómez, A. Blanco, G. Marrugo, J. Osorio, E. Castillo, J. Aristóbulo, J. Acero, J. Anal. Appl. Pyrolysis, 2015, 112, 379 LINK https://doi.org/10.1016/j.jaap.2014.11.007
    [Google Scholar]
  38. A. A. Boateng, D. E. Daugaard, N. M. Goldberg, K. B. Hicks, Ind. Eng. Chem. Res., 2007, 46, (7), 1891 LINK https://doi.org/10.1021/ie0614529
    [Google Scholar]
  39. C. E. Greenhalf, D. J. Nowakowski, A. B. Harms, J. O. Titiloye, A. V Bridgwater, Fuel, 2013, 108, 216 LINK https://doi.org/10.1016/j.fuel.2013.01.075
    [Google Scholar]
  40. D. S. Scott, P. Majerski, J. Piskorz, D. Radlein, J. Anal. Appl. Pyrolysis, 1999, 51, (1–2), 23 LINK https://doi.org/10.1016/s0165-2370(99)00006-6
    [Google Scholar]
  41. W. T. Tsai, M. K. Lee, Y. M. Chang, Bioresour. Technol., 2007, 98, (1), 22 LINK https://doi.org/10.1016/j.biortech.2005.12.005
    [Google Scholar]
  42. M. Garcı̀a-Pèrez, A. Chaala, C. Roy, J. Anal. Appl. Pyrolysis, 2002, 65, (2), 111 LINK https://doi.org/10.1016/s0165-2370(01)00184-x
    [Google Scholar]
  43. J. A. Garcia-Nunez, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, I. Fonts, J. Abrego, R. J. M. Westerhof, M. Garcia-Perez, Energy Fuels, 2017, 31, (6), 5751 LINK https://doi.org/10.1021/acs.energyfuels.7b00641
    [Google Scholar]
  44. Y. Le Brech, L. Jia, S. Cissé, G. Mauviel, N. Brosse, A. Dufour, J. Anal. Appl. Pyrolysis, 2016, 117, 334 LINK https://doi.org/10.1016/j.jaap.2015.10.013
    [Google Scholar]
  45. X. Ying, W. Tiejun, M. Longlong, Z. Qi, C. Guanyi, Trans. Chinese Soc. Agric. Eng., 2013, 29, (1), 196 LINK http://www.tcsae.org/en/article/id/20130126
    [Google Scholar]
  46. T. Schulzke, S. Conrad, J. Westermeyer, Biomass Bioenergy, 2016, 95, 287 LINK https://doi.org/10.1016/j.biombioe.2016.05.022
    [Google Scholar]
  47. E. Henrich, N. Dahmen, F. Weirich, R. Reimert, C. Kornmayer, Fuel Process. Technol., 2016, 143, 151 LINK https://doi.org/10.1016/j.fuproc.2015.11.003
    [Google Scholar]
  48. M. Amutio, G. Lopez, J. Alvarez, M. Olazar, J. Bilbao, Bioresour. Technol., 2015, 194, 225 LINK https://doi.org/10.1016/j.biortech.2015.07.030
    [Google Scholar]
  49. J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Fuel, 2014, 128, 162 LINK https://doi.org/10.1016/j.fuel.2014.02.074
    [Google Scholar]
  50. M. Garcìa-Pérez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, J. Anal. Appl. Pyrolysis, 2007, 78, (1), 104 LINK https://doi.org/10.1016/j.jaap.2006.05.003
    [Google Scholar]
  51. P. Sanginés, M. P. Domínguez, F. Sánchez, G. San Miguel, J. Renew. Sustain. Energy, 2015, 7, (4), 043103 LINK https://doi.org/10.1063/1.4923442
    [Google Scholar]
  52. N. Miskolczi, A. Angyal, L. Bartha, I. Valkai, Fuel Process. Technol., 2009, 90, (7–8), 1032 LINK https://doi.org/10.1016/j.fuproc.2009.04.019
    [Google Scholar]
  53. D. A. Laird, R. C. Brown, J. E. Amonette, J. Lehmann, Biofuels Bioprod. Biorefining, 2009, 3, (5), 547 LINK https://doi.org/10.1002/bbb.169
    [Google Scholar]
  54. W. Ma, G. Du, J. Li, Y. Fang, L. Hou, G. Chen, D. Ma, Waste Manag., 2017, 59, 371 LINK https://doi.org/10.1016/j.wasman.2016.10.053
    [Google Scholar]
  55. J. J. Manyà, Environ. Sci. Technol., 2012, 46, (15), 7939 LINK https://doi.org/10.1021/es301029g
    [Google Scholar]
  56. ‘How the Industry Approaches Sustainability’, IATA, Programs and Policy: https://www.iata.org/en/programs/sustainability/ (Accessed on 17th June 2025 )
  57. K. Muhamad, ‘The Impact of Biochar on Soil Functioning in Two Contrasting Climates’, PhD Thesis, Lancaster University, UK, 2016
  58. M. N. Uddin, M. T. Rangon, Johnson Matthey Technol. Rev., 2025, 69, (4), 546 LINK https://doi.org/10.1595/205651325X17497274824204
    [Google Scholar]
/content/journals/10.1595/205651325X17411019785188
Loading
/content/journals/10.1595/205651325X17411019785188
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): biomass; greenhouse gas; jet fuel; pyrolysis; Sustainable aviation fuel; waste
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test