Skip to content
1887
Volume 69, Issue 4
  • ISSN: 2056-5135

Abstract

The inherent variability and the sporadic and unpredictable nature of solar irradiance limit the efficiency of photovoltaic (PV) arrays in consistently achieving maximum power output. This paper addresses the technical challenge of enhancing power extraction efficiency from PV systems by implementing and conducting a comparative study of various maximum power point tracking (MPPT) algorithms. The various algorithms which are considered for analysis purpose are perturb and observe algorithm (P&O), incremental conductance algorithm (INC) and fuzzy logic-based algorithm (FLC). The objective is to identify the most effective algorithm to maintain PV array operation near its maximum power point (MPP) under dynamic environmental conditions. The methodology involves configuring a direct current (DC) DC-DC converter with precise duty cycle adjustments to optimise energy conversion and transfer. Additionally, the extracted energy is directed to a battery or energy storage unit a secondary converter. The system is simulated in MATLAB® to test and compare the performance of different MPPT algorithms. This facilitates the determination of which algorithm most efficiently optimises power extraction from the PV system.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17424021232922
2025-10-01
2025-07-19
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/4/Katoch_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17424021232922&mimeType=html&fmt=ahah

References

  1. M. Ahmed, C. Shuai, M. Ahmed, Int. J. Environ. Sci. Technol., 2022, 20, (3), 2683 LINK https://doi.org/10.1007/s13762-022-04159-y
    [Google Scholar]
  2. A. Khurshid, K. Khan, J. Cifuentes-Faura, Transp. Res. Part D: Transp. Environ., 2023, 122, 103869 LINK https://doi.org/10.1016/j.trd.2023.103869
    [Google Scholar]
  3. A. F. Pennington, C. R. Cornwell, K. D. Sircar, M. C. Mirabelli, Environ. Res., 2024, 251, (2), 118697 LINK https://doi.org/10.1016/j.envres.2024.118697
    [Google Scholar]
  4. M. Mitra, N. R. Singha, P. K. Chattopadhyay, Sustain. Energy Technol. Assess., 2023, 57, 103295 LINK https://doi.org/10.1016/j.seta.2023.103295
    [Google Scholar]
  5. N. Karami, N. Moubayed, R. Outbib, Renew. Sustain. Energy Rev., 2017, 68, (1), 1 LINK https://doi.org/10.1016/j.rser.2016.09.132
    [Google Scholar]
  6. M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. de A. e Melo, C. A. Canesin, IEEE Trans. Ind. Electron., 2013, 60, (3), 1156 LINK https://doi.org/10.1109/tie.2012.2198036
    [Google Scholar]
  7. H. A. Mohamed, H. A. Khattab, A. Mobarka, G. A. Morsy, ‘Design, Control and Performance Analysis of DC-DC Boost Converter for Stand-Alone PV System’, 2016 Eighteenth International Middle East Power Systems Conference, Cairo, Egypt, 27th–29th December, 2016, IEEE, Piscataway, USA, 2016, pp. 101106 LINK https://doi.org/10.1109/mepcon.2016.7836878
    [Google Scholar]
  8. M. Z. Zulkifli, M. Azri, A. Alias, M. H. N. Talib, J. M. Lazi, Int. J. Power Electron. Drive Syst., 2019, 10, (2), 1090 LINK https://doi.org/10.11591/ijpeds.v10.i2.pp1090-1101
    [Google Scholar]
  9. K. Nathan, S. Ghosh, Y. Siwakoti, T. Long, IEEE Trans. Energy Convers., 2019, 34, (1), 191 LINK https://doi.org/10.1109/tec.2018.2876454
    [Google Scholar]
  10. B. K. Panigrahi, P. R. Thakura, ‘Implementation of Cuk Converter with MPPT’, 2017 Third International Conference on Advances in Electrical, Information, Communication and Bio-Informatics, Chennai, India, 27th–28th February, 2017, IEEE, Piscataway, USA, 2017, pp. 105110 LINK https://doi.org/10.1109/aeeicb.2017.7972392
    [Google Scholar]
  11. S. Sangeetha, J. Joseph, ‘Design and Implementation of SEPIC Converter Based PV System Using Modified Incremental Conductance Algorithm’, 2016 International Conference on Electrical Electronics and Optimization Techniques, Chennai, India, Piscataway, USA, 2016, pp. 12621267 LINK https://doi.org/10.1109/iceeot.2016.7754886
    [Google Scholar]
  12. M. Hawsawi, H. M. D. Habbi, E. Alhawsawi, M. Yahya, M. A. Zohdy, Designs, 2023, 7, (5), 114 LINK https://doi.org/10.3390/designs7050114
    [Google Scholar]
  13. D. Yadav, N. Singh, ‘Performance Evaluation of Basic, Modified, and Advanced DC-DC Boost Converters Used with PV System’, in “Sustainable Technology and Advanced Computing in Electrical Engineering”, eds. V. Mahajan, A. Chowdhury, N. P. Padhy, F. Lezama, Vol. 939, Springer, Singapore, 2022 LINK https://doi.org/10.1007/978-981-19-4364-5_25
    [Google Scholar]
  14. A. F. Alsulami, S. M. S. Al Arefi, ‘Fraction Open Circuit and Fractional Short Circuit Based Incremental Conductance Maximum Power Point Tracking Controller’, 2021 10th International Conference Renewable Energy Research and Application, Istanbul, Turkey, 26th–29th September, 2021, IEEE, Piscastaway, USA, 2021, pp. 184189 LINK https://doi.org/10.1109/icrera52334.2021.9598557
    [Google Scholar]
  15. U. S. Ali, D. V Veeraraghavulu, M. Niveditha, N. Priyadharshini, P. Sandhiya, ‘Stateflow Based Incremental Conductance MPPT of a Photovoltaic System Using Z-Source DC-DC Converter’, 2016 Biennial International Conference on Power Energy Systems: Towards Sustainable Energy, Bengaluru, India, 21th–23th January, 2016, IEEE, Piscastaway, USA, 2016, pp. 16 LINK https://doi.org/10.1109/pestse.2016.7516474
    [Google Scholar]
  16. M. A. Elgendy, D. J. Atkinson, B. Zahawi, IET Renew. Power Gener., 2016, 10, (2), 127 LINK https://doi.org/10.1049/iet-rpg.2015.0132
    [Google Scholar]
  17. W. Zhu, L. Shang, P. Li, H. Guo, J. Eng., 2018, (17), 1878 LINK https://doi.org/10.1049/joe.2018.8337
    [Google Scholar]
  18. P. Manoharan, U. Subramaniam, T. S. Babu, S. Padmanaban, J. B. Holm-Nielsen, M. Mitolo, S. Ravichandran, IEEE Syst. J., 2021, 15, (2), 3024 LINK https://doi.org/10.1109/jsyst.2020.3003255
    [Google Scholar]
  19. M. Hammami, “Level Doubling Network and Ripple Correlation Control MPPT Algorithm for Grid-Connected Photovoltaic Systems”, Springer Theses, Springer Nature, Switzerland, 2019, 132 pp LINK https://doi.org/10.1007/978-3-030-10492-4
  20. M. Hebchi, A. Kouzou, A. Choucha, ‘Improved Incremental Conductance Algorithm for MPPT in Photovoltaic System’, 2021 18th International Multi-Conference on Systems, Signals & Devices, Montasir, Tunisia, 22th–25th March, 2021, IEEE, Piscastaway, USA, 2021, pp. 12711278 LINK https://doi.org/10.1109/ssd52085.2021.9429365
    [Google Scholar]
  21. A. Ali, K. Almutairi, S. Padmanaban, V. Tirth, S. Algarni, K. Irshad, S. Islam, M. H. Zahir, M. Shafiullah, M. Z. Malik, IEEE Access, 2020, 8, 127368 LINK https://doi.org/10.1109/access.2020.3007710
    [Google Scholar]
  22. H. Rezk, M. Aly, M. Al-Dhaifallah, M. Shoyama, IEEE Access, 2019, 7, 106427 LINK https://doi.org/10.1109/access.2019.2932694
    [Google Scholar]
  23. Y. E. A. Idrissi, K. Assalaou, L. Elmahni, E. Aitiaz, Int. J. Power Electron. Drive Syst., 2022, 13, (3), 1791 LINK https://doi.org/10.11591/ijpeds.v13.i3.pp1791-1801
    [Google Scholar]
  24. R. T. Moyo, P. Y. Tabakov, S. Moyo, J. Sol. Energy Eng., 2020, 143, (4), 041002 LINK https://doi.org/10.1115/1.4048882
    [Google Scholar]
  25. S. Abdulaziz, G. Atlam, G. Zaki, E. Nabil, Indones. J. Electr. Eng. Comput. Sci., 2022, 26, (2), 605 LINK https://doi.org/10.11591/ijeecs.v26.i2.pp605-616
    [Google Scholar]
  26. C. A. Gueymard, Energy Convers. Manag., 2023, 295, 117602 LINK https://doi.org/10.1016/j.enconman.2023.117602
    [Google Scholar]
  27. B. Shwetha, G. S. Babu, G. Mallesham, Results Control Optim., 2024, 15, 100420 LINK https://doi.org/10.1016/j.rico.2024.100420
    [Google Scholar]
  28. I. Yadav, S. Sachan, S. K. Maurya, S. Deb, Energy Reports, 2023, 10, 744 LINK https://doi.org/10.1016/j.egyr.2023.07.033
    [Google Scholar]
  29. N. Mohan, T. N. Underland, W. P. Robbins, “Power Electronics; Converters, Applications and Design”, John Wiley and Sons, New Jersey, USA, 1989, 668 pp
  30. P. S. Bhimra, “Power Electronics”, 5th Edn., Khanna Publishers, New Delhi, India, 1990, 1024 pp
/content/journals/10.1595/205651325X17424021232922
Loading
/content/journals/10.1595/205651325X17424021232922
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bidirectional converter; DC-DC converter; energy storage unit; MATLAB®; MPPT; PV array
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test