Skip to content
1887
Volume 70, Issue 2
  • ISSN: 2056-5135

Abstract

The oscillatory baffled reactor (OBR) is one of the most promising reactor types for oxidative desulfurisation (ODS) due to high proven sulfur removal efficiency and improved mass and heat transport steps through the oxidation reaction. In Part III of this literature review, we review OBR design, scale-up, industrial application and economic considerations. Practical application of OBR for ODS process is described, catalytic systems are presented and the remaining challenges are outlined.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17539747239869
2026-04-01
2026-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/2/Humadi-Pt3_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17539747239869&mimeType=html&fmt=ahah

References

  1. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2025, 69, (4), 616 LINK https://doi.org/10.1595/205651325X17458327898766
    [Google Scholar]
  2. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2026, 70, (1), 38 LINK https://doi.org/10.1595/205651326X17539747239841
    [Google Scholar]
  3. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, A. Harvey, RSC Adv., 2022, 12, (23), 14385 LINK https://doi.org/10.1039/d2ra01663j
    [Google Scholar]
  4. M. S. R. Abbott, A. P. Harvey, G. V. Perez, M. K. Theodorou, Interface Focus, 2013, 3, (1), 20120036 LINK https://doi.org/10.1098/rsfs.2012.0036
    [Google Scholar]
  5. A. Rahmani, M. Dehghani-Soufi, H. Fazeli, H. Khadem Razavi, V. Mortezaeikia, ‘Experimental Analysis of Nano Additive Mixing in Bio-Lubricants: Implications for Tribological Performance Using Oscillatory Flow Technology’, 2025, preprint LINK https://doi.org/10.2139/ssrn.5118516
  6. X. Ni, M. R. Mackley, A. P. Harvey, P. Stonestreet, M. H. I. Baird, N. V. Rama Rao, Chem. Eng. Res. Des., 2003, 81, (3), 373 LINK https://doi.org/10.1205/02638760360596928
    [Google Scholar]
  7. N. Reis, A. P. Harvey, M. R. Mackley, A. A. Vicente, J. A. Teixeira, Chem. Eng. Res. Des., 2005, 83, (4), 357 LINK https://doi.org/10.1205/cherd.03401
    [Google Scholar]
  8. A. N. Phan, A. P. Harvey, Chem. Eng. J., 2012, 180, 229 LINK https://doi.org/10.1016/j.cej.2011.11.018
    [Google Scholar]
  9. F. R. Mohd Rasdi, A. N. Phan, A. P. Harvey, Chem. Eng. J., 2013, 222, 282 LINK https://doi.org/10.1016/j.cej.2013.02.080
    [Google Scholar]
  10. K. B. Smith, ‘Scale-up of Oscillatory Flow Mixing’, PhD Thesis, University of Cambridge, UK, 2000 LINK https://doi.org/10.17863/CAM.16063
    [Google Scholar]
  11. K. B. Smith, M. R. Mackley, Chem. Eng. Res. Des., 2006, 84, (11), 1001 LINK https://doi.org/10.1205/cherd.05054
    [Google Scholar]
  12. S. M. R. Ahmed, A. N. Phan, A. P. Harvey, Chem. Eng. Process. Process Intensif., 2018, 130, 229 LINK https://doi.org/10.1016/j.cep.2018.06.016
    [Google Scholar]
  13. P. Bianchi, J. D. Williams, C. O. Kappe, J. Flow Chem., 2020, 10, (3), 475 LINK https://doi.org/10.1007/s41981-020-00105-6
    [Google Scholar]
  14. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, G. H. Abdullah, A. N. Phan, A. P. Harvey, Process Saf. Environ. Prot., 2021, 152, 178 LINK https://doi.org/10.1016/j.psep.2021.05.028
    [Google Scholar]
  15. X. Ni, G. Brogan, A. Struthers, D. C. Bennett, S. F. Wilson, Chem. Eng. Res. Des., 1998, 76, (5), 635 LINK https://doi.org/10.1205/026387698525162
    [Google Scholar]
  16. X. Ni, S. Gao, J. Chem. Technol. Biotechnol., 1996, 65, (1), 65 LINK https://doi.org/10.1002/(sici)1097-4660(199601)65:1<65::aid-jctb352>3.0.co;2-1
    [Google Scholar]
  17. C. R. Brunold, J. C. B. Hunns, M. R. Mackley, J. W. Thompson, Chem. Eng. Sci., 1989, 44, (5), 1227 LINK https://doi.org/10.1016/0009-2509(89)87022-8
    [Google Scholar]
  18. H. Jian, X. Ni, Chem. Eng. Res. Des., 2005, 83, (10), 1163 LINK https://doi.org/10.1205/cherd.03312
    [Google Scholar]
  19. X. Ni, Y. S. De Gélicourt, M. H. I. Baird, N. V. R. Rao, Can. J. Chem. Eng., 2001, 79, (3), 444 LINK https://doi.org/10.1002/cjce.5450790318
    [Google Scholar]
  20. S. M. R. Ahmed, A. N. Phan, A. P. Harvey, Ind. Eng. Chem. Res., 2019, 58, (15), 5929 LINK https://doi.org/10.1021/acs.iecr.8b04883
    [Google Scholar]
  21. X. Ni, S. Gao, Chem. Eng. J. Biochem. Eng. J., 1996, 63, (3), 157 LINK https://doi.org/10.1016/s0923-0467(96)03120-x
    [Google Scholar]
  22. M. Mackley, P. Stonestreet, Chem. Eng. Sci., 1995, 50, (14), 2211 LINK https://doi.org/10.1016/0009-2509(95)00088-M
    [Google Scholar]
  23. R. Law, S. M. R. Ahmed, N. Tang, A. N. Phan, A. P. Harvey, Chem. Eng. Process. Process Intensif., 2018, 125, 133 LINK https://doi.org/10.1016/j.cep.2018.01.016
    [Google Scholar]
  24. S. Ahmed, ‘Development of Scale-up Rules for Various Designs of Oscillatory Baffled Reactor’, PhD Thesis, Newcastle University, UK, 2018
    [Google Scholar]
  25. N. Masngut, A. P. Harvey, J. Ikwebe, Biofuels, 2010, 1, (4), 605 LINK https://doi.org/10.4155/bfs.10.38
    [Google Scholar]
  26. S. T. L. Harrison, M. R. Mackley, Chem. Eng. Sci., 1992, 47, (2), 490 LINK https://doi.org/10.1016/0009-2509(92)80039-f
    [Google Scholar]
  27. X. Ni, M. R. Mackley, Chem. Eng. J., 1993, 52, (3), 107 LINK https://doi.org/10.1016/0300-9467(93)80059-w
    [Google Scholar]
  28. M. E. Fabiyi, R. L. Skelton, J. Photochem. Photobiol. A Chem., 1999, 129, (1–2), 17 LINK https://doi.org/10.1016/s1010-6030(99)00177-x
    [Google Scholar]
  29. X. Ni, J. C. Johnstone, K. C. Symes, B. D. Grey, D. C. Bennett, AIChE J., 2001, 47, (8), 1746 LINK https://doi.org/10.1002/aic.690470807
    [Google Scholar]
  30. X. Ni, J. A. Cosgrove, R. H. Cumming, C. A. Greated, K. R. Murray, P. Norman, Chem. Eng. Res. Des., 2001, 79, (1), 33 LINK https://doi.org/10.1205/026387601528507
    [Google Scholar]
  31. X. Ni, K. R. Murray, Y. Zhang, D. Bennett, T. Howes, Powder Technol., 2002, 124, (3), 281 LINK https://doi.org/10.1016/s0032-5910(02)00022-0
    [Google Scholar]
  32. P. Gao, W. H. Ching, M. Herrmann, C. K. Chan, P. L. Yue, Chem. Eng. Sci., 2003, 58, (3–6), 1013 LINK https://doi.org/10.1016/s0009-2509(02)00642-5
    [Google Scholar]
  33. A. P. Harvey, M. R. Mackley, T. Seliger, J. Chem. Technol. Biotechnol., 2003, 78, (2–3), 338 LINK https://doi.org/10.1002/jctb.782
    [Google Scholar]
  34. H. K. Gaidhani, B. McNeil, X. Ni, Chem. Eng. Res. Des., 2005, 83, (6), 640 LINK https://doi.org/10.1205/cherd.04355
    [Google Scholar]
  35. N. Reis, C. N. Gonçalves, M. Aguedo, N. Gomes, J. A. Teixeira, A. A. Vicente, Biotechnol. Lett., 2006, 28, (7), 485 LINK https://doi.org/10.1007/s10529-006-0003-x
    [Google Scholar]
  36. N. Reis, C. N. Gonçalves, A. A. Vicente, J. A. Teixeira, Biotechnol. Bioeng., 2006, 95, (4), 744 LINK https://doi.org/10.1002/bit.21035
    [Google Scholar]
  37. N. Masngut, M. S. Takriff, A. W. Mohammad, M. S. Kalil, A. A. H. Kadhum, J. Teknol., 2007, 47, (1), 45 LINK https://doi.org/10.11113/jt.v47.276
    [Google Scholar]
  38. M. S. Takriff, N. Masngut, A. A. H. Kadhum, M. S. Kalil, A. W. Mohammad, Sains Malays., 2009, 38, (2), 191 LINK http://www.ukm.my/jsm/english_journals/vol38num2_2009/vol38num2_09page191-196.html
    [Google Scholar]
  39. A. N. Phan, A. P. Harvey, M. Rawcliffe, Fuel Process. Technol., 2011, 92, (8), 1560 LINK https://doi.org/10.1016/j.fuproc.2011.03.022
    [Google Scholar]
  40. J. P. Solano, R. Herrero, S. Espín, A. N. Phan, A. P. Harvey, Chem. Eng. Res. Des., 2012, 90, (6), 732 LINK https://doi.org/10.1016/j.cherd.2012.03.017
    [Google Scholar]
  41. E. Lobry, T. Lasuye, C. Gourdon, C. Xuereb, Chem. Eng. J., 2015, 259, 505 LINK https://doi.org/10.1016/j.cej.2014.08.014
    [Google Scholar]
  42. S. M. R. Ahmed, R. Law, A. N. Phan, A. P. Harvey, Chem. Eng. Process. Process Intensif., 2018, 132, 25 LINK https://doi.org/10.1016/j.cep.2018.08.009
    [Google Scholar]
  43. G. Jimeno, Y. C. Lee, X.-W. Ni, Chem. Eng. Process. Process Intensif., 2018, 134, 153 LINK https://doi.org/10.1016/j.cep.2018.11.002
    [Google Scholar]
  44. S. M. R. Ahmed, D. Walton, S. A. Gheni, A. N. Phan, Chem. Eng. Technol., 2023, 46, (11), 2345 LINK https://doi.org/10.1002/ceat.202200369
    [Google Scholar]
  45. A. A. Hassan, S. A. Gheni, S. M. Ahmed, G. H. Abdullah, A. Harvey, Arabian J. Chem., 2022, 15, (5), 103635 LINK https://doi.org/10.1016/j.arabjc.2021.103635
    [Google Scholar]
  46. M. M. Ali, S. A. Gheni, S. M. R. Ahmed, H. M. Hmood, A. A. Hassan, H. R. Mohammed, S. T. Mohammed, N. T. Karakullukcu, Energy Convers. Manag. X, 2023, 19, 100383 LINK https://doi.org/10.1016/j.ecmx.2023.100383
    [Google Scholar]
  47. M. M. Ali, S. M. R. Ahmed, D. Y. Aqar, S. A. Gheni, G. H. Abdullah, M. A. Mahmood, O. A. Habeeb, A. Harvey, A. N. Phan, AIChE J., 2022, 68, (9), e17751 LINK https://doi.org/10.1002/aic.17751
    [Google Scholar]
  48. O. I. Farhan, H. N. Mohammed, S. M. R. Ahmed, S. A. Gheni, Clean. Eng. Technol., 2024, 23, 100815 LINK https://doi.org/10.1016/j.clet.2024.100815
    [Google Scholar]
  49. P. Adriaenssens, J. Van Olmen, J. J. John, K. Binnemans, T. Van Gerven, Sep. Purif. Technol., 2025, 355, (B), 129465 LINK https://doi.org/10.1016/j.seppur.2024.129465
    [Google Scholar]
  50. J. dos S. Silva, P. A. Melo, R. Marinho, N. J. C. de Jesus, M. H. S. Andrade, P. M. Beck, J. C. Pinto, Macromol. Theory Simul., 2025, 34, (3), 2400089 LINK https://doi.org/10.1002/mats.202400089
    [Google Scholar]
  51. H. M. Hmood, S. A. Gheni, S. M. R. Ahmed, M. M. Ali, H. Y. Saleh, M. H. Mohammed, A. E. Mohammed, M. A. Mahomood, H. R. Mohammed, A. A. Hassan, A. Harvey, Particuology, 2024, 84, 249 LINK https://doi.org/10.1016/j.partic.2023.06.016
    [Google Scholar]
  52. S. A. Gheni, H. M. Hmood, S. M. R. Ahmed, M. H. Mohammed, J. Pet. Res. Stud., 2023, 13, (3), 91 LINK https://doi.org/10.52716/jprs.v13i3.683
    [Google Scholar]
  53. A. T. Nawaf, B. A. Abdulmajeed, Chem. Eng. Res. Des., 2024, 209, 193 LINK https://doi.org/10.1016/j.cherd.2024.07.032
    [Google Scholar]
  54. A. Nawaf, B. A. Abdulmajeed, J. Chem. Pet. Eng., 2024, 58, (2), 359
    [Google Scholar]
  55. A. T. Nawaf, B. A. Abdulmajeed, Int. J. Environ. Sci. Technol., 2025, 22, (6), 4923 LINK https://doi.org/10.1007/s13762-024-05920-1
    [Google Scholar]
/content/journals/10.1595/205651326X17539747239869
Loading
/content/journals/10.1595/205651326X17539747239869
Loading

Data & Media loading...

Supplements

  • Article Type: Review Article
Keyword(s): desulfurisation technologies; ODS process; oscillatory baffled reactor; reactor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test