Skip to content
1887
Volume 70, Issue 2
  • ISSN: 2056-5135

Abstract

This study investigates the comparative performance and emission characteristics of four fuels: diesel, liquefied petroleum gas (LPG), neat biodiesel (mustard-based) and gasoline, using a single-cylinder, four-stroke engine operated at a constant speed of 1500 rpm under eight load conditions (0.25 kW to 2.00 kW). Experiments were conducted both on the stock diesel engine and on the same engine modified for spark ignition (SI) operation. Key performance indicators such as thermal efficiency (TE), fuel consumption and emissions (hydrocarbons, carbon monoxide and nitrogen oxides (NOx)) were measured under steady-state conditions. Outcome indicated that LPG produced the lowest hydrocarbon and carbon monoxide emissions, highlighting its potential as a clean-burning fuel. Biodiesel exhibited moderate emissions but recorded the highest NOx levels, likely due to its higher oxygen content. Diesel demonstrated the best fuel economy (lowest specific fuel consumption (SFC)) but higher emissions compared to LPG and biodiesel. Gasoline achieved the highest TE but exhibited the highest hydrocarbon and carbon monoxide emissions, making it the least environmentally favourable option. The findings support the viability of LPG and biodiesel as cleaner alternatives to conventional diesel and gasoline, with trade-offs in fuel economy and NOx requiring further optimisation.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17532820252977
2026-04-01
2026-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/2/Vardhan_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17532820252977&mimeType=html&fmt=ahah

References

  1. ‘Extreme Weather and Climate Change’, NASA, USA, 23rd October, 2024 LINK https://science.nasa.gov/climate-change/extreme-weather/
  2. ‘Paris Temperature Goal’, Climate Action Tracker, Climate Analytics gGmbH, Germany: https://climateactiontracker.org/methodology/paris-temperature-goal/ (Accessed on 11th November 2025)
  3. A. I. Jabbr, H. Gaja, U. O. Koylu, Int. J. Hydrogen Energy, 2020, 45, (38), 19965 LINK https://doi.org/10.1016/j.ijhydene.2020.05.071
    [Google Scholar]
  4. A. V. Prabhu, A. Alagumalai, A. Jodat, J. Therm. Anal. Calorim., 2021, 145, (4), 1935 LINK https://doi.org/10.1007/s10973-021-10683-9
    [Google Scholar]
  5. S. V. Karthic, M. S. Kumar, Energy, 2021, 229, 120787 LINK https://doi.org/10.1016/j.energy.2021.120787
    [Google Scholar]
  6. Z. Jing, C. Zhang, P. Cai, Y. Li, Z. Chen, S. Li, A. Lu, Fuel, 2021, 300, 120953 LINK https://doi.org/10.1016/j.fuel.2021.120953
    [Google Scholar]
  7. M. Colakoglu, A. Durmayaz, Energy Convers. Manage., 2021, 227, 113603 LINK https://doi.org/10.1016/j.enconman.2020.113603
    [Google Scholar]
  8. V. Ayhan, J. Energy Eng., 2021, 147, (1) LINK https://doi.org/10.1061/(asce)ey.1943-7897.0000739
    [Google Scholar]
  9. S. Kaleemuddin, G. A. P. Rao, Therm. Sci., 2010, 14, (4), 913 LINK https://doi.org/10.2298/tsci1004913k
    [Google Scholar]
  10. P. Sengottuvel, P. Vijayabalan, J. Adv. Mech. Eng. Technol., 2015, 1, (1), 1
    [Google Scholar]
  11. F. Aktaş, Int. J. Automot. Sci. Technol., 2022, 6, (1), 1 LINK https://doi.org/10.30939/ijastech..980338
    [Google Scholar]
  12. A. P. Singh, V. Kumar, A. K. Agarwal, Fuel, 2021, 301, 120986 LINK https://doi.org/10.1016/j.fuel.2021.120986
    [Google Scholar]
  13. B. Subramanian, V. Thangavel, Int. J. Hydrogen Energy, 2020, 45, (46), 25479 LINK https://doi.org/10.1016/j.ijhydene.2020.06.280
    [Google Scholar]
  14. K. S. Kumar, Int. J. Ambient Energy, 2025, 46, (1), 2462593 LINK https://doi.org/10.1080/01430750.2025.2462593
    [Google Scholar]
  15. K. S. Kumar, S. Muniamuthu, T. M. Y. Khan, A. Razak, Case Stud. Therm. Eng., 2025, 72, 106284 LINK https://doi.org/10.1016/j.csite.2025.106284
    [Google Scholar]
  16. M. S. Aswathanrayan, N. Santhosh, S. H. Venkataramana, K. S. Kumar, S. Kamangar, A. I. A. Arabi, S. Algburi, O. J. Al-sareji, A. Bhowmik, Sci. Rep., 2025, 15, 12683 LINK https://doi.org/10.1038/s41598-025-97092-2
    [Google Scholar]
  17. K. S. Kumar, S. Alqarni, S. Islam, M. A. Shah, ACS Omega, 2024, 9, (12), 13960 LINK https://doi.org/10.1021/acsomega.3c09014
    [Google Scholar]
  18. K. S. Kumar, R. Surakasi, S. G. K. Patro, N. Govil, M. K. Ramis, A. Razak, P. Sharma, M. Alsubih, S. Islam, T. M. Y. Khan, N. Almakayeel, S. Chintakindi, J. Cleaner Prod., 2024, 434, 140354 LINK https://doi.org/10.1016/j.jclepro.2023.140354
    [Google Scholar]
  19. B. Dogan, A. Cakmak, M. K. Yesilyurt, D. Erol, Fuel, 2020, 275, 117973 LINK https://doi.org/10.1016/j.fuel.2020.117973
    [Google Scholar]
  20. K. Purushothaman, G. Nagarajan, Renew. Energy, 2009, 34, (1), 242 LINK https://doi.org/10.1016/j.renene.2008.03.012
    [Google Scholar]
  21. P. A. Harari, N. R. Banapurmath, V. S. Yaliwal, M. E. M. Soudagar, T. M. Y. Khan, M. A. Mujtaba, M. R. Safaei, N. Akram, M. Goodarzi, A. Elfasakhany, A. I. El-Seesy, 2021, Case Stud. Therm. Eng., 25, 100921 LINK https://doi.org/10.1016/j.csite.2021.100921
    [Google Scholar]
/content/journals/10.1595/205651326X17532820252977
Loading
/content/journals/10.1595/205651326X17532820252977
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test