Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135

Abstract

World trade has transformed food retailing and driven the development of technology for the transportation and storage of horticultural products, providing year-round supply of fruit and vegetables. Horticultural produce is highly perishable, as fruit and vegetables continue their metabolic processes that lead to ripening and senescence after harvest, making them ultimately unmarketable. Advanced postharvest technologies are essential for reducing food waste while maintaining high standards of safety and quality. Together with cold storage, controlled atmosphere (CA) and modified atmosphere packaging (MAP) have been applied to alter the produce’s internal and external environment, decreasing its metabolic activity and extending shelf-life. Both CA and MAP have benefitted from technological innovation. Respiratory quotient control has improved the management of conventional and recently developed CA systems; gas scavengers have made MAP more efficient; and the inclusion of natural additives has enhanced food safety across the supply chain. This paper critically reviews the application of new postharvest techniques to manipulate gaseous environments and highlights areas that require further study.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696684
2018-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Terry_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696684&mimeType=html&fmt=ahah

References

  1. Sim S., Barry M., Clift R., and Cowell S. J. Int. J. Life Cycle Assess., 2007, 12, (6), 422 LINK https://doi.org/10.1065/lca2006.07.259 [Google Scholar]
  2. Paull R. E. Postharvest Biol. Technol., 1999, 15, (3), 263 LINK https://doi.org/10.1016/s0925-5214(98)00090-8 [Google Scholar]
  3. Dincer I. “Refrigeration Systems and Applications”, 3rd Edn., John Wiley & Sons Ltd, Chichester, UK, 2017, 752 pp [Google Scholar]
  4. Sánchez-Mata M. C., Cámara M., and Díez-Marqués C. Food Chem., 2003, 80, (3), 309 LINK https://doi.org/10.1016/S0308-8146(02)00265-0 [Google Scholar]
  5. Fonseca S. C., Oliveira F. A. R., and Brecht J. K. J. Food Eng., 2002, 52, (2), 99 LINK https://doi.org/10.1016/S0260-8774(01)00106-6 [Google Scholar]
  6. Valls A., García F., Ramírez M., and Benlloch J. Tunn. Undergr. Sp. Technol., 2015, 50, 178 LINK https://doi.org/10.1016/J.TUST.2015.07.003 [Google Scholar]
  7. Beaudry R. M. Postharvest Biol. Technol., 1999, 15, (3), 293 LINK https://doi.org/10.1016/S0925-5214(98)00092-1 [Google Scholar]
  8. Dalrymple D. G. Technol. Cult., 1969, 10, (1), 35 LINK https://doi.org/10.2307/3102002 [Google Scholar]
  9. Kidd F., and West C. “A Relation Between the Respiratory Activity and the Keeping Quality of Apples”, Report of the Food Investigation Board London for 1925 and 1926, pp. 37–41 [Google Scholar]
  10. Smock R. M., ‘Controlled Atmosphere Storage of Fruits’, in “Horticultural Reviews”, ed. and Janick J. 1, The AVI Publishing Company Inc, Connecticut, USA, 1979, pp. 301–336 LINK https://doi.org/10.1002/9781118060742.ch8 [Google Scholar]
  11. Wright K. P., and Kader A. A. Postharvest Biol. Technol., 1997, 10, (1), 89 LINK https://doi.org/10.1016/s0925-5214(96)00062-2 [Google Scholar]
  12. Abayomi L. A., and Terry L. A. J. Sci. Food Agric., 2009, 89, (4), 683 LINK https://doi.org/10.1002/jsfa.3502 [Google Scholar]
  13. Carmen Alamar M., Collings E., Cools K., and Terry L. A. Postharvest Biol. Technol., 2017, 134, 76 LINK https://doi.org/10.1016/j.postharvbio.2017.08.003 [Google Scholar]
  14. Pesis E., Aharoni D., Aharon Z., Ben-Arie R., Aharoni N., and Fuchs Y. Postharvest Biol. Technol., 2000, 19, (1), 93 LINK https://doi.org/10.1016/s0925-5214(00)00080-6 [Google Scholar]
  15. Lurie S., and Crisosto C. H. Postharvest Biol. Technol., 2005, 37, (3), 195 LINK https://doi.org/10.1016/j.postharvbio.2005.04.012 [Google Scholar]
  16. Singh S. P., and Singh Z. Int. J. Food Sci. Technol., 2012, 48, (2), 363 LINK https://doi.org/10.1111/j.1365-2621.2012.03196.x [Google Scholar]
  17. del Carmen Alamar M., Falagán N., Aktas E., and Terry L. A. J. Sci. Food Agric., 2017, 98, (1), 8 LINK https://doi.org/10.1002/jsfa.8708 [Google Scholar]
  18. Neven L. G., and Rehfield-ray L. J. Econ. Entomol., 2006, 99, (3), 658 LINK https://doi.org/10.1093/jee/99.3.658 [Google Scholar]
  19. Li W., Wang K., Chen L., Johnson J. A., and Wang S. J. Stored Prod. Res., 2015, 62, 52 LINK https://doi.org/10.1016/j.jspr.2015.04.001 [Google Scholar]
  20. Thompson A. K. “Controlled Atmosphere Storage of Fruits and Vegetables”, CABI International, London, UK, 2010, 288 pp [Google Scholar]
  21. “Crop Post-Harvest: Science and Technology: Perishables”, eds. Rees D., Farrell G., and Orchard J. 3, Blackwell Publishing Ltd, Chicester, UK, 2012, 464 pp [Google Scholar]
  22. Chope G. A., Terry L. A., and White P. J. Postharvest Biol. Technol., 2007, 44, (3), 228 LINK https://doi.org/10.1016/j.postharvbio.2006.12.018 [Google Scholar]
  23. Bessemans N., Verboven P., Verlinden B. E., and Nicolaï B. M. Postharvest Biol. Technol., 2016, 115, 91 LINK https://doi.org/10.1016/j.postharvbio.2015.12.019 [Google Scholar]
  24. Graell J., Larrigaudiere C., and Vendrell M. Food Sci. Technol. Int., 1997, 3, (3), 203 LINK https://doi.org/10.1177/108201329700300308 [Google Scholar]
  25. Lopez M. L., Lavilla M. T., Recasens I., Graell J., and Vendrell M. J. Sci. Food Agric., 2000, 80, (3), 311 LINK https://doi.org/10.1002/1097-0010(200002)80:3<311::AID-JSFA519>3.0.CO;2-F [Google Scholar]
  26. Gran C. D., and Beaudry R. M. Postharvest Biol. Technol., 1993, 3, (3), 259 LINK https://doi.org/10.1016/0925-5214(93)90061-7 [Google Scholar]
  27. Lévesque P. G., DeEll J. R., and Murr D. P. HortScience, 2006, 41, (5), 1322 LINK http://hortsci.ashspublications.org/content/41/5/1322.full.pdf+html [Google Scholar]
  28. Wang Z., and Dilley D. R. Acta Hortic., 2001, 553, 261 LINK https://doi.org/10.17660/ActaHortic.2001.553.58 [Google Scholar]
  29. Saltveit M. E. Postharvest Biol. Technol., 2003, 27, (1), 3 LINK https://doi.org/10.1016/S0925-5214(02)00184-9 [Google Scholar]
  30. Tran D. T., Verlinden B. E., Hertog M., and Nicolaï B. M. Sci. Hortic. Amsterdam, 2015, 184, 18 LINK https://doi.org/10.1016/j.scienta.2014.11.014 [Google Scholar]
  31. Zanella A. Postharvest Biol. Technol., 2003, 27, (1), 69 LINK https://doi.org/10.1016/s0925-5214(02)00187-4 [Google Scholar]
  32. Prange R. K., Wright A. H., DeLong J. M., and Zanella A. Acta Hortic., 2013, 1012, 905 LINK https://doi.org/10.17660/actahortic.2013.1012.122 [Google Scholar]
  33. Schouten S. P., Prange R. K., Verschoor J., Lammers T. R., and Oosterhaven J. IFAC Proc. Vol., 1998, 31, (9), 25 LINK https://doi.org/10.1016/s1474-6670(17)44023-7 [Google Scholar]
  34. Juncai H., Yaohua H., and Kangquan G. Int. J. Agric. Biol. Eng., 2014, 7, (5), 71 LINK https://www.ijabe.org/index.php/ijabe/article/view/1260 [Google Scholar]
  35. DeEll J. R., van Kooten O., Prange R. K., and Murr D. P. Hortic. Rev., 1999, 23, (2), 69 [Google Scholar]
  36. Prange R. K., DeLong J. M., and Wright A. H. Acta Hortic., 2012, 945, 89 LINK https://doi.org/10.17660/actahortic.2012.945.10 [Google Scholar]
  37. Mattheis J. P., and Rudell D. Postharvest Biol. Technol., 2011, 60, (2), 125 LINK https://doi.org/10.1016/j.postharvbio.2010.12.007 [Google Scholar]
  38. Mahajan P. V., Luca A., and Edelenbos M. Comput. Electron. Agr., 2016, 121, 347 LINK https://doi.org/10.1016/j.compag.2015.12.017 [Google Scholar]
  39. Bessemans N., Verboven P., Verlinden B. E., and Nicolaï B. M. Postharvest Biol. Technol., 2018, 136, 31 LINK https://doi.org/10.1016/j.postharvbio.2017.09.011 [Google Scholar]
  40. “Eco-Friendly Technology for Postharvest Produce Quality”, ed. Siddiqui M. W. Elsevier Inc, Boston, USA, 2016 [Google Scholar]
  41. Yang W., Duan L., Chen G., Xiong L., and Liu Q. Curr. Opin. Plant Biol., 2013, 16, (2), 180 LINK https://doi.org/10.1016/j.pbi.2013.03.005 [Google Scholar]
  42. Terry L. A., Ilkenhans T., Poulston S., Rowsell L., and Smith A. W. J. Postharvest Biol. Technol., 2007, 45, (2), 214 LINK https://doi.org/10.1016/j.postharvbio.2006.11.020 [Google Scholar]
  43. de Wild H. P. J., Woltering E. J., and Peppelenbos H. W. J. Exp. Botany, 1999, 50, (335), 837 LINK https://doi.org/10.1093/jxb/50.335.837 [Google Scholar]
  44. Blankenship S. M., and Dole J. M. Postharvest Biol. Technol., 2003, 28, (1), 1 LINK https://doi.org/10.1016/S0925-5214(02)00246-6 [Google Scholar]
  45. Li L., Lichter A., Chalupowicz D., Gamrasni D., Goldberg T., Nerya O., Ben-Arie R., and Porat R. Postharvest Biol. Technol., 2016, 111, 322 LINK https://doi.org/10.1016/j.postharvbio.2015.09.031 [Google Scholar]
  46. Watkins C. B. Biotechnol. Adv., 2006, 24, (4), 389 LINK https://doi.org/10.1016/j.biotechadv.2006.01.005 [Google Scholar]
  47. Falagán N., Artés F., Artés-Hernández F., Gómez P. A., Pérez-Pastor A., and Aguayo E. Postharvest Biol. Technol., 2015, 110, 24 LINK https://doi.org/10.1016/j.postharvbio.2015.07.011 [Google Scholar]
  48. Bessemans N., Verboven P., Verlinden B., and Nicolai B. ‘Comparative Study of RQ-DCA and DCA-CF Technology for Storage of Golden Delicious Apple Fruit’, XII International Controlled & Modified Atmosphere Research Conference (CaMa2017),Warsaw, Poland,18th–22nd June, 2017 [Google Scholar]
  49. Oliveira M., Abadias M., Usall J., Torres R., Teixidó N., and Viñas I. Trends Food Sci. Technol., 2015, 46, (1), 13 LINK https://doi.org/10.1016/j.tifs.2015.07.017 [Google Scholar]
  50. Beaudry R., ‘MAP as a Basis for Active Packaging’, in “Intelligent and Active Packaging for Fruits and Vegetables”, ed. and Wilson C. L. Taylor and Francis Group LLC, Boca Raton, USA, 2007, pp. 31–56 [Google Scholar]
  51. del Carmen Villalobos M., Serradilla M. J., Martín A., Hernández-León A., Ruíz-Moyano S., and de G. Córdoba M. Food Microbiol., 2017, 63, 35 LINK https://doi.org/10.1016/j.fm.2016.10.035 [Google Scholar]
  52. Somboonkaew N., and Terry L. A. Postharvest Biol. Technol., 2010, 56, (3), 246 LINK https://doi.org/10.1016/j.postharvbio.2010.01.009 [Google Scholar]
  53. Peelman N., Ragaert P., Vandemoortele A., Verguldt E., De Meulenaer B., and Devlieghere F. Innov. Food Sci. Emerg. Technol., 2014, 26, 319 LINK https://doi.org/10.1016/j.ifset.2014.06.007 [Google Scholar]
  54. Zhang M., Meng X., Bhandari B., and Fang Z. Crit. Rev. Food Sci. Nutr., 2015, 56, (13), 2174 LINK https://doi.org/10.1080/10408398.2013.819794 [Google Scholar]
  55. Ghidelli C., and Pérez-Gago M. B. Crit. Rev. Food Sci. Nutr., 2016, 1 LINK https://doi.org/10.1080/10408398.2016.1211087 [Google Scholar]
  56. Giménez M., Olarte C., Sanz S., Lomas C., Echávarri J. F., and Ayala F. Food Microbiol., 2003, 20, (2), 231 LINK https://doi.org/10.1016/s0740-0020(02)00146-6 [Google Scholar]
  57. Posada-Izquierdo G. D., Pérez-Rodríguez F., López-Gálvez F., Allende A., Gil M. I., and Zurera G. Int. J. Food Microbiol., 2014, 177, 1 LINK https://doi.org/10.1016/j.ijfoodmicro.2013.12.025 [Google Scholar]
  58. Siro I., Devlieghere F., Jacxsens L., Uyttendaele M., and Debevere J. Int. J. Food Sci. Technol., 2006, 41, (1), 93 LINK https://doi.org/10.1111/j.1365-2621.2005.01046.x [Google Scholar]
  59. Mistriotis A., Briassoulis D., Giannoulis A., and D’Aquino S. Postharvest Biol. Technol., 2016, 111, 380 LINK https://doi.org/10.1016/j.postharvbio.2015.09.022 [Google Scholar]
  60. Siracusa V., Rocculi P., Romani S., and Rosa M. D. Trends Food Sci. Technol., 2008, 19, (12), 634 LINK https://doi.org/10.1016/j.tifs.2008.07.003 [Google Scholar]
  61. Wilson M. D., Stanley R. A., Eyles A., and Ross T. Crit. Rev. Food Sci. Nutr., 2017, 1 LINK https://doi.org/10.1080/10408398.2017.1375892 [Google Scholar]
  62. Clarke R., ‘Breatheway® Membrane Technology and Modified Atmosphere Packaging’, in “Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables”, eds. Brody A. L., Zhuang H., and Han J. H. Blackwell Publishing Ltd, Chichester, UK, 2011, pp. 185208 LINK https://doi.org/10.1002/9780470959145.ch9 [Google Scholar]
  63. Caleb O. J., Mahajan P. V., Al-Said F. A., and Opara U. L. CyTA J. Food, 2013, 11, (3), 199 LINK https://doi.org/10.1080/19476337.2012.721807 [Google Scholar]
  64. Belay Z. A., Caleb O. J., and Opara U. L. Food Packag. Shelf Life, 2016, 10, 1 LINK https://doi.org/10.1016/j.fpsl.2016.08.001 [Google Scholar]
  65. Sousa-Gallagher M. J., and Mahajan P. V. Food Control, 2013, 29, (2), 444 LINK https://doi.org/10.1016/j.foodcont.2012.05.072 [Google Scholar]
  66. Eleftheriadou M., Pyrgiotakis G., and Demokritou P. Curr. Opin. Biotechnol., 2017, 44, 87 LINK https://doi.org/10.1016/j.copbio.2016.11.012 [Google Scholar]
  67. Meng X., Zhang M., and Adhikari B. Postharvest Biol. Technol., 2012, 71, 13 LINK https://doi.org/10.1016/j.postharvbio.2012.04.006 [Google Scholar]
  68. Tomás-Callejas A., Boluda M., Robles P. A., Artés F., and Artés-Hernández F. LWT – Food Sci. Technol., 2011, 44, (6), 1422 LINK https://doi.org/10.1016/j.lwt.2011.01.020 [Google Scholar]
  69. Zhang M., Zhan Z. G., Wang S. J., and Tang J. M. LWT – Food Sci. Technol., 2008, 41, (4), 686 LINK https://doi.org/10.1016/j.lwt.2007.04.011 [Google Scholar]
  70. “Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities”, ed. Yahia E. M. Taylor and Francis Group LLC, Boca Raton, USA, 2009, 608 pp [Google Scholar]
  71. Brown A. L., Brooks J. C., Karunasena E., Echeverry A., Laury A., and Brashears M. M. J. Food Sci., 2011, 76, (6), M427 LINK https://doi.org/10.1111/j.1750-3841.2011.02260.x [Google Scholar]
  72. Maghoumi M., Gómez P. A., Artés-Hernández F., Mostofi Y., Zamani Z., and Artés F. J. Sci. Food Agric., 2012, 93, (5), 1162 LINK https://doi.org/10.1002/jsfa.5868 [Google Scholar]
  73. Jiang T. Postharvest Biol. Technol., 2013, 76, 91 LINK https://doi.org/10.1016/j.postharvbio.2012.09.005 [Google Scholar]
  74. Oms-Oliu G., Raybaudi-Massilia Martínez R. M., Soliva-Fortuny R., and Martín-Belloso O. Food Control, 2008, 19, (2), 191 LINK https://doi.org/10.1016/j.foodcont.2007.03.009 [Google Scholar]
  75. López-Gálvez F., Ragaert P., Haque M. A., Eriksson M., van Labeke M. C., and Devlieghere F. Postharvest Biol. Technol., 2015, 100, 168 LINK https://doi.org/10.1016/j.postharvbio.2014.10.001 [Google Scholar]
  76. Amanatidou A., Slump R. A., Gorris L. G. M., and Smid E. J. J. Food Sci., 2000, 65, (1), 61 LINK https://doi.org/10.1111/j.1365-2621.2000.tb15956.x [Google Scholar]
  77. Soliva-Fortuny R. C., and Martín-Belloso O. Trends Food Sci. Technol., 2003, 14, (9), 341 LINK https://doi.org/10.1016/s0924-2244(03)00054-2 [Google Scholar]
  78. Tewari G., Jayas D. S., Jeremiah L. E., and Holley R. A. Int. J. Food Sci. Technol., 2002, 37, (2), 209 LINK https://doi.org/10.1046/j.1365-2621.2002.00558.x [Google Scholar]
  79. Cruz R. S., Camilloto G. P., dos Santos Pires A. C., ‘Oxygen Scavengers: An Approach on Food Preservation’, in “Structure and Function of Food Engineering”, ed. and Eissa A. A. InTech, Rijeka, Croatia, 2012, pp. 2142 LINK https://doi.org/10.5772/48453 [Google Scholar]
  80. Pereira de Abreu D. A., Paseiro Losada P., Maroto J., and Cruz J. M. Innov. Food Sci. Emerg. Technol., 2011, 12, (1), 50 LINK https://doi.org/10.1016/J.IFSET.2010.12.006 [Google Scholar]
  81. Lee D. S. Trends Food Sci. Technol., 2016, 57, Part A, 146 LINK https://doi.org/10.1016/j.tifs.2016.09.014 [Google Scholar]
  82. Kuswandi B., Wicaksono Y., Jayus , Abdullah A., Heng L. Y., and Ahmad M. Sens. Instrum. Food Qual., 2011, 5, (3–4), 137 LINK https://doi.org/10.1007/s11694-011-9120-x [Google Scholar]
  83. Jedermann R., Nicometo M., Uysal I., and Lang W. Philos. Trans. Roy. Soc. A, 2014, 372, (2017), 20130302 LINK https://doi.org/10.1098/rsta.2013.0302 [Google Scholar]
  84. Brecht J. K., Loaza F. E., Nunes M. C. N., Emond J. P., Uysal I., Badia F., Wells J., and Saenz J. Acta Hortic., 2016, 1120, 253 LINK https://doi.org/10.17660/ActaHortic.2016.1120.38 [Google Scholar]
  85. Bordonaba J. G., and Terry L. A. J. Agric. Food Chem., 2009, 57, (18), 8220 LINK https://doi.org/10.1021/jf901596w [Google Scholar]
  86. Meng X., Kim S., Puligundla P., and Ko S. J. Korean Soc. Appl. Biol. Chem., 2014, 57, (6), 723 LINK https://doi.org/10.1007/s13765-014-4180-3 [Google Scholar]
  87. Hempel A. W., Gillanders R. N., Papkovsky D. B., and Kerry J. P. Int. J. Dairy Technol., 2012, 65, (3), 456 LINK https://doi.org/10.1111/j.1471-0307.2012.00849.x [Google Scholar]
  88. Lang C., and Hübert T. Food Bioprocess Technol., 2012, 5, (8), 3244 LINK https://doi.org/10.1007/s11947-011-0694-4 [Google Scholar]
  89. Toivonen P. M. A., Mitcham E. J., Terry L. A., ‘Postharvest Care and the Treatment of Fruits and Vegetables’, in “Horticulture: Plants for People and Places”, eds. Dixon G., and Aldous D. 1, Springer Science+Business Media, Dordrecht, Netherlands, 2014, pp. 465483 LINK https://doi.org/10.1007/978-94-017-8578-5_13 [Google Scholar]
  90. Dhall R. K. Crit. Rev. Food Sci. Nutr., 2013, 53, (5), 435 LINK https://doi.org/10.1080/10408398.2010.541568 [Google Scholar]
  91. Arvanitoyannis I., Gorris L., ‘Edible and Biodegradable Polymeric Materials for Food Packaging or Coating’, in “Processing Foods: Quality Optimization and Process Assessment”, eds. Oliveira F. A. R., and Oliveira J. C. CRC Press LLC, Boca Raton, USA, 1999, pp. 357372 [Google Scholar]
  92. Valverde J. M., Valero D., Martínez-Romero D., Guillén F., Castillo S., and Serrano M. J. Agric. Food Chem., 2005, 53, (20), 7807 LINK https://doi.org/10.1021/jf050962v [Google Scholar]
  93. Falagán N., Artés F., and Aguayo E. Food Sci. Technol. Int., 2016, 22, (5), 429 LINK https://doi.org/10.1177/1082013215621816 [Google Scholar]
  94. Chitravathi K., Chauhan O. P., and Raju P. S. J. Food Sci. Technol., 2016, 53, (8), 3320 LINK https://doi.org/10.1007/s13197-016-2309-6 [Google Scholar]
  95. Marelli B., Brenckle M. A., Kaplan D. L., and Omenetto F. G. Sci. Rep., 2016, 6, 25263 LINK https://doi.org/10.1038/srep25263 [Google Scholar]
  96. Burt S. Int. J. Food Microbiol., 2004, 94, (3), 223 LINK https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 [Google Scholar]
  97. Chawengkijwanich C., and Hayata Y. Int. J. Food Microbiol., 2008, 123, (3), 288 LINK https://doi.org/10.1016/J.IJFOODMICRO.2007.12.017 [Google Scholar]
  98. Othman S. H., Abd Salam N. R., Zainal N., Basha R. K., and Talib R. A. Int. J. Photoenergy, 2014, 945930 LINK https://doi.org/10.1155/2014/945930 [Google Scholar]
  99. Cabezas-Serrano A. B., Amodio M. L., and Colelli G. Postharvest Biol. Technol., 2013, 75, 17 LINK https://doi.org/10.1016/j.postharvbio.2012.07.006 [Google Scholar]
  100. Nigro F., and Ippolito A. Acta Hortic., 2016, 1144, 293 LINK https://doi.org/10.17660/ActaHortic.2016.1144.43 [Google Scholar]
  101. Li D., Luo Z., Mou W., Wang Y., Ying T., and Mao L. Postharvest Biol. Technol., 2014, 90, 56 LINK https://doi.org/10.1016/j.postharvbio.2013.12.006 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X696684
Loading
/content/journals/10.1595/205651318X696684
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error