Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135
  • oa Enhancing Microbial Electron Transfer Through Synthetic Biology and Biohybrid Approaches: Part I

    Bioelectrochemistry for sustainable energy conversion

  • Authors: Benjamin Myers1, Phil Hill2, Frankie Rawson1 and Katalin Kovács3
  • Affiliations: 1 Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of NottinghamUniversity Park, Clifton Boulevard, Nottingham, NG7 2RDUK 2 School of Biosciences, University of NottinghamSutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RDUK 3 School of Pharmacy, Boots Science Building, University of Nottingham, University ParkClifton Boulevard, Nottingham, NG7 2RDUK
  • Source: Johnson Matthey Technology Review, Volume 66, Issue 4, Oct 2022, p. 443 - 454
  • DOI: https://doi.org/10.1595/205651322X16548607638938
    • Received: 07 Feb 2022
    • Accepted: 10 Jun 2022
    • Published online: 10 Jun 2022

Abstract

Traditional microbial synthesis of chemicals and fuels often rely on energy-rich feedstocks such as glucose, raising ethical concerns as they are directly competing with the food supply. Therefore, it is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or , by harnessing the metabolic processes of bacteria to valorise a range of waste products, including greenhouse gases (GHGs). However, the strict growth and nutrient requirements of industrially relevant bacteria, combined with low efficiencies of native extracellular electron transfer (EET) mechanisms, reduce the potential for industrial scalability. In this two-part work, we review the most significant advancements in techniques aimed at improving and modulating the efficiency of microbial EET, giving an objective and balanced view of current controversies surrounding the physiology of microbial electron transfer, alongside the methods used to wire microbial redox centres with the electrodes of bioelectrochemical systems conductive nanomaterials.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16548607638938
2022-06-10
2024-12-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Kovacs_16a_Imp_pt1.html?itemId=/content/journals/10.1595/205651322X16548607638938&mimeType=html&fmt=ahah

References

  1. U. Schröder, J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK https://doi.org/10.1007/s10008-011-1395-7 [Google Scholar]
  2. M. C. Potter, Proc. R. Soc. B: Biol. Sci, 1911, 84, (571), 260 LINK https://doi.org/10.1098/rspb.1911.0073 [Google Scholar]
  3. L. Su, C. M. Ajo-Franklin, Curr. Opin. Biotechnol., 2019, 57, 66 LINK https://doi.org/10.1016/j.copbio.2019.01.018 [Google Scholar]
  4. T. Krieg, A. Sydow, S. Faust, I. Huth, D. Holtmann, Angew. Chem. Int. Ed., 2018, 57, (7), 1879 LINK https://doi.org/10.1002/anie.201711302 [Google Scholar]
  5. M. M. Clark, M. D. Paxhia, J. M. Young, M. P. Manzella, G. Reguera, Appl. Environ. Microbiol., 2021, 87, (20), e00964-21 LINK https://doi.org/10.1128/AEM.00964-21 [Google Scholar]
  6. B. K. Mutuma, N. F. Sylla, A. Bubu, N. M. Ndiaye, C. Santoro, A. Brilloni, F. Poli, N. Manyala, F. Soavi, Electrochim. Acta, 2021, 391, 138960 LINK https://doi.org/10.1016/j.electacta.2021.138960 [Google Scholar]
  7. G. J. Tsekouras, P. M. Deligianni, F. D. Kanellos, V. T. Kontargyri, P. A. Kontaxis, N. M. Manousakis, C. N. Elias, Front. Energy Res., 2022, 10, 843768 LINK https://doi.org/10.3389/fenrg.2022.843768 [Google Scholar]
  8. D. R. Lovley, J. Yao, Trends Biotechnol., 2021, 39, (9), 940 LINK https://doi.org/10.1016/j.tibtech.2020.12.005 [Google Scholar]
  9. D. R. Lovley, MBio, 2017, 8, (3), e00695-17 LINK https://doi.org/10.1128/mBio.00695-17 [Google Scholar]
  10. X. Liu, X. Jing, Y. Ye, J. Zhan, J. Ye, S. Zhou, Environ. Sci. Technol. Lett., 2020, 7, (1), 27 LINK https://doi.org/10.1021/acs.estlett.9b00707 [Google Scholar]
  11. D. R. Lovley, D. E. Holmes, Nat. Rev. Microbiol., 2022, 20, (1), 5 LINK https://doi.org/10.1038/s41579-021-00597-6 [Google Scholar]
  12. R. Yamasaki, T. Maeda, T. K. Wood, Biotechnol. Biofuels, 2018, 11, 211 LINK https://doi.org/10.1186/s13068-018-1208-7 [Google Scholar]
  13. D. M. Gurumurthy, R. N. Bharagava, A. Kumar, B. Singh, M. Ashfaq, G. D. Saratale, S. I. Mulla, Microbiol. Res., 2019, 229, 126324 LINK https://doi.org/10.1016/j.micres.2019.126324 [Google Scholar]
  14. D. J. Filman, S. F. Marino, J. E. Ward, L. Yang, Z. Mester, E. Bullitt, D. R. Lovley, M. Strauss, Commun. Biol., 2019, 2, 219 LINK https://doi.org/10.1038/s42003-019-0448-9 [Google Scholar]
  15. Y. Jiang, M. Shi, L. Shi, Sci. China Life Sci., 2019, 62, (10), 1275 LINK https://doi.org/10.1007/s11427-018-9464-3 [Google Scholar]
  16. F. Wang, Y. Gu, J. P. O’Brien, S. M. Yi, S. E. Yalcin, V. Srikanth, C. Shen, D. Vu, N. L. Ing, A. I. Hochbaum, E. H. Egelman, N. S. Malvankar, Cell, 2019, 177, (2), 361 LINK https://doi.org/10.1016/j.cell.2019.03.029 [Google Scholar]
  17. L. Su, T. Fukushima, A. Prior, M. Baruch, T. J. Zajdel, C. M. Ajo-Franklin, ACS Synth. Biol., 2020, 9, (1), 115 LINK https://doi.org/10.1021/acssynbio.9b00379 [Google Scholar]
  18. J. Feng, M. Jiang, K. Li, Q. Lu, S. Xu, X. Wang, K. Chen, P. Ouyang, Bioelectrochemistry, 2020, 134, 107498 LINK https://doi.org/10.1016/j.bioelechem.2020.107498 [Google Scholar]
  19. P. N. Reardon, K. T. Mueller, J. Biol. Chem., 2013, 288, (41), 29260 LINK https://doi.org/10.1074/jbc.M113.498527 [Google Scholar]
  20. K. M. Cosert, A. Castro-Forero, R. J. Steidl, R. M. Worden, G. Reguera, MBio, 2019, 10, (6), e02721-19 LINK https://doi.org/10.1128/mBio.02721-19 [Google Scholar]
  21. D. R. Lovley, D. J. F. Walker, Front. Microbiol., 2019, 10, 2078 LINK https://doi.org/10.3389/fmicb.2019.02078 [Google Scholar]
  22. F. J. Rawson, A. J. Gross, D. J. Garrett, A. J. Downard, K. H. R. Baronian, Electrochem. Commun., 2012, 15, (1), 85 LINK https://doi.org/10.1016/j.elecom.2011.11.030 [Google Scholar]
  23. L. J. C. Jeuken, K. Hards, Y. Nakatani, J. Bacteriol., 2020, 202, (7), e00029-20 LINK https://doi.org/10.1128/JB.00029-20 [Google Scholar]
  24. W. Shen, X. Zhao, X. Wang, S. Yang, X. Jia, X. Yu, J. Yang, Q. Yang, H. Zhao, Environ. Res., 2020, 185, 109463 LINK https://doi.org/10.1016/j.envres.2020.109463 [Google Scholar]
  25. A. Schievano, T. P. Sciarria, K. Vanbroekhoven, H. De Wever, S. Puig, S. J. Andersen, K. Rabaey, D. Pant, Trends Biotechnol., 2016, 34, (11), 866 LINK https://doi.org/10.1016/j.tibtech.2016.04.007 [Google Scholar]
  26. M. O. Yee, J. Deutzmann, A. Spormann, A.-E. Rotaru, Nanotechnology, 2020, 31, (17), 174003 LINK https://doi.org/10.1088/1361-6528/ab6ab5 [Google Scholar]
  27. C. Sánchez, P. Dessì, M. Duffy, P. N. L. Lens, Biosens. Bioelectron., 2020, 150, 111884 LINK https://doi.org/10.1016/j.bios.2019.111884 [Google Scholar]
  28. B. E. Logan, K. Rabaey, Science, 2012, 337, (6095), 686 LINK https://doi.org/10.1126/science.1217412 [Google Scholar]
  29. S. Chen, S. A. Patil, R. K. Brown, U. Schröder, Appl. Energy, 2019, 233234, 15 LINK https://doi.org/10.1016/j.apenergy.2018.10.015 [Google Scholar]
  30. S. Kalathil, K. P. Katuri, A. S. Alazmi, S. Pedireddy, N. Kornienko, P. M. F. J. Costa, P. E. Saikaly, Chem. Mater., 2019, 31, (10), 3686 LINK https://doi.org/10.1021/acs.chemmater.9b00394 [Google Scholar]
  31. S. Bajracharya, M. Sharma, G. Mohanakrishna, X. D. Benneton, D. P. B. T. B. Strik, P. M. Sarma, D. Pant, Renew. Energy, 2016, 98, 153 LINK https://doi.org/10.1016/j.renene.2016.03.002 [Google Scholar]
  32. M. Li, M. Zhou, X. Tian, C. Tan, C. T. McDaniel, D. J. Hassett, T. Gu, Biotechnol. Adv., 2018, 36, (4), 1316 LINK https://doi.org/10.1016/j.biotechadv.2018.04.010 [Google Scholar]
  33. X. A. Walter, I. Merino-Jiménez, J. Greenman, I. Ieropoulos, J. Power Sources, 2018, 392, 150 LINK https://doi.org/10.1016/j.jpowsour.2018.02.047 [Google Scholar]
  34. A. Y. Radeef, Z. Z. Ismail, Bioelectrochemistry, 2021, 142, 107925 LINK https://doi.org/10.1016/j.bioelechem.2021.107925 [Google Scholar]
  35. H. Yu, K. Li, Y. Cao, Y. Zhu, X. Liu, J. Sun, Energy Rep., 2022, 8, (6), 388 LINK https://doi.org/10.1016/j.egyr.2022.03.109 [Google Scholar]
  36. T. Huang, D. Song, L. Liu, S. Zhang, Sep. Purif. Technol., 2019, 215, 51 LINK https://doi.org/10.1016/j.seppur.2019.01.002 [Google Scholar]
  37. L. G. Olias, M. Di Lorenzo, RSC Adv., 2021, 11, (27), 16307 LINK https://doi.org/10.1039/d1ra01138c [Google Scholar]
  38. J. Zhai, S. Dong, Curr. Opin. Electrochem., 2022, 34, 100975 LINK https://doi.org/10.1016/j.coelec.2022.100975 [Google Scholar]
  39. G. Pasternak, J. Greenman, I. Ieropoulos, Sens. Actuators. B.: Chem., 2017, 244, 815 LINK https://doi.org/10.1016/j.snb.2017.01.019 [Google Scholar]
  40. B. Cohen, J. Bacteriol., 1931, 21, (1), 18 [Google Scholar]
  41. J. Panich, B. Fong, S. W. Singer, Trends Biotechnol., 2021, 39, (4), 412 LINK https://doi.org/10.1016/j.tibtech.2021.01.001 [Google Scholar]
  42. W. Bai, T. O. Ranaivoarisoa, R. Singh, K. Rengasamy, A. Bose, Commun. Biol., 2021, 4, 1257 LINK https://doi.org/10.1038/s42003-021-02781-z [Google Scholar]
  43. K. Rabaey, R. A. Rozendal, Nat. Rev. Microbiol., 2010, 8, (10), 706 LINK https://doi.org/10.1038/nrmicro2422 [Google Scholar]
  44. A. Prévoteau, J. M. Carvajal-Arroyo, R. Ganigué, K. Rabaey, Curr. Opin. Biotechnol., 2020, 62, 48 LINK https://doi.org/10.1016/j.copbio.2019.08.014 [Google Scholar]
  45. L. Zou, Y. Huang, Z. Long, Y. Qiao, World J. Microbiol. Biotechnol., 2019, 35, (1), 9 LINK https://doi.org/10.1007/s11274-018-2576-7 [Google Scholar]
  46. L. Zou, Y. Qiao, C. M. Li, Electrochem. Energy Rev., 2018, 1, (4), 567 LINK https://doi.org/10.1007/s41918-018-0020-1 [Google Scholar]
  47. T. Zheng, J. Li, Y. Ji, W. Zhang, Y. Fang, F. Xin, W. Dong, P. Wei, J. Ma, M. Jiang, Front. Bioeng. Biotechnol., 2020, 8, 10 LINK https://doi.org/10.3389/fbioe.2020.00010 [Google Scholar]
  48. H. Ren, H. Tian, C. L. Gardner, T.-L. Ren, J. Chae, Nanoscale, 2016, 8, (6), 3539 LINK https://doi.org/10.1039/c5nr07267k [Google Scholar]
  49. F. Geppert, D. Liu, E. Weidner, A. ter Heijne, Int. J. Hydrogen Energy, 2019, 44, (39), 21464 LINK https://doi.org/10.1016/j.ijhydene.2019.06.189 [Google Scholar]
  50. P. S. Bonanni, D. F. Bradley, G. D. Schrott, J. P. Busalmen, ChemSusChem, 2013, 6, (4), 711 LINK https://doi.org/10.1002/cssc.201200671 [Google Scholar]
  51. N. S. Malvankar, D. R. Lovley, Curr. Opin. Biotechnol., 2014, 27, 88 LINK https://doi.org/10.1016/j.copbio.2013.12.003 [Google Scholar]
  52. P. Zhang, J. Liu, Y. Qu, J. Zhang, Y. Zhong, Y. Feng, J. Power Sources, 2017, 361, 318 LINK https://doi.org/10.1016/j.jpowsour.2017.06.069 [Google Scholar]
  53. B. E. Logan, R. Rossi, A. Ragab, P. E. Saikaly, Nat. Rev. Microbiol., 2019, 17, (5), 307 LINK https://doi.org/10.1038/s41579-019-0173-x [Google Scholar]
  54. A. Pareek, J. S. Sravan, S. V. Mohan, Mater. Sci. Energy Technol., 2019, 2, (3), 600 LINK https://doi.org/10.1016/j.mset.2019.06.006 [Google Scholar]
  55. M. A. TerAvest, C. M. Ajo-Franklin, Biotechnol. Bioeng., 2016, 113, (4), 687 LINK https://doi.org/10.1002/bit.25723 [Google Scholar]
  56. H.-L. H. Hsu, Y. Zhang, P. Deng, X. Dai, X. Jiang, Nano Lett., 2019, 19, (12), 8787 LINK https://doi.org/10.1021/acs.nanolett.9b03573 [Google Scholar]
  57. S. Das, L. Diels, D. Pant, S. A. Patil, M. M. Ghangrekar, J. Electrochem. Soc., 2020, 167, (15), 155510 LINK https://doi.org/10.1149/1945-7111/abb836 [Google Scholar]
  58. B. Myers, P. Hill, F. Rawson, K. Kovács, Johnson Matthey Technol. Rev., 2022, 66, (4), 455 LINK https://technology.matthey.com/article/66/4/455-465/ [Google Scholar]
  59. B. E. Logan, Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK https://doi.org/10.1038/nrmicro2113 [Google Scholar]
  60. A. Hirose, T. Kasai, M. Aoki, T. Umemura, K. Watanabe, A. Kouzuma, Nat. Commun., 2018, 9, 1083 LINK https://doi.org/10.1038/s41467-018-03416-4 [Google Scholar]
  61. H. M. Jensen, M. A. TerAvest, M. G. Kokish, C. M. Ajo-Franklin, ACS Synth. Biol., 2016, 5, (7), 679 LINK https://doi.org/10.1021/acssynbio.5b00279 [Google Scholar]
  62. A. F. Smith, X. Liu, T. L. Woodard, T. Fu, T. Emrick, J. M. Jiménez, D. R. Lovley, J. Yao, Nano Res., 2020, 13, (5), 1479 LINK https://doi.org/10.1007/s12274-020-2825-6 [Google Scholar]
  63. N. S. Malvankar, D. R. Lovley, ChemSusChem, 2012, 5, (6), 1039 LINK https://doi.org/10.1002/cssc.201100733 [Google Scholar]
  64. Y. Tan, R. Y. Adhikari, N. S. Malvankar, J. E. Ward, T. L. Woodard, K. P. Nevin, D. R. Lovley, MBio, 2017, 8, (1), e02203-16 LINK https://doi.org/10.1128/mBio.02203-16 [Google Scholar]
  65. N. L. Ing, M. Y. El-Naggar, A. I. Hochbaum, J. Phys. Chem. B, 2018, 122, (46), 10403 LINK https://doi.org/10.1021/acs.jpcb.8b07431 [Google Scholar]
  66. M. V. A. Martins, A. R. Pereira, R. A. S. Luz, R. M. Iost, F. N. Crespilho, Phys. Chem. Chem. Phys., 2014, 16, (33), 17426 LINK https://doi.org/10.1039/c4cp00452c [Google Scholar]
  67. Y. Yang, Z. Wang, C. Gan, L. H. Klausen, R. Bonné, G. Kong, D. Luo, M. Meert, C. Zhu, G. Sun, J. Guo, Y. Ma, J. T. Bjerg, J. Manca, M. Xu, L. P. Nielsen, M. Dong, Nat. Commun., 2021, 12, 1709 LINK https://doi.org/10.1038/s41467-021-21709-z [Google Scholar]
  68. L. E. Doyle, E. Marsili, Bioresour. Technol., 2018, 258, 354 LINK https://doi.org/10.1016/j.biortech.2018.02.073 [Google Scholar]
  69. Y. A. Gorby, S. Yanina, J. S. McLean, J. K. Fredrickson, Proc. Natl. Acad. Sci., 2006, 103, (30), 11358 LINK https://doi.org/10.1073/pnas.0604517103 [Google Scholar]
  70. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, W. Verstraete, Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK https://doi.org/10.1128/AEM.70.9.5373-5382.2004 [Google Scholar]
  71. R. L. Heydorn, C. Engel, R. Krull, K. Dohnt, ChemBioEng Rev., 2020, 7, (1), 4 LINK https://doi.org/10.1002/cben.201900023 [Google Scholar]
  72. Y. Xiao, E. Zhang, J. Zhang, Y. Dai, Z. Yang, H. E. M. Christensen, J. Ulstrup, F. Zhao, Sci. Adv., 2017, 3, (7), e 1700623 LINK https://doi.org/10.1126/sciadv.1700623 [Google Scholar]
  73. N. R. Glasser, S. H. Saunders, D. K. Newman, Annu. Rev. Microbiol., 2017, 71, 731 LINK https://doi.org/10.1146/annurev-micro-090816-093913 [Google Scholar]
  74. S. A. Patil, C. Hägerhäll, L. Gorton, Bioanal. Rev., 2012, 4, (2–4), 159 LINK https://doi.org/10.1007/s12566-012-0033-x [Google Scholar]
  75. H.-B. Shen, X.-Y. Yong, Y.-L. Chen, Z.-H. Liao, R.-W. Si, J. Zhou, S.-Y. Wang, Y.-C. Yong, P.-K. OuYang, T. Zheng, Bioresour. Technol., 2014, 167, 490 LINK https://doi.org/10.1016/j.biortech.2014.05.093 [Google Scholar]
  76. H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, J. L. Stirling, C. F. Thurston, Biotechnol. Lett., 1985, 7, (10), 699 LINK https://doi.org/10.1007/bf01032279 [Google Scholar]
  77. U. Schröder, Phys. Chem. Chem. Phys., 2007, 9, (21), 2619 LINK https://doi.org/10.1039/b703627m [Google Scholar]
  78. G. Pankratova, L. Hederstedt, L. Gorton, Anal. Chim. Acta, 2019, 1076, 32 LINK https://doi.org/10.1016/j.aca.2019.05.007 [Google Scholar]
  79. P. Subramanian, S. Pirbadian, M. Y. El-Naggar, G. J. Jensen, Proc. Natl. Acad. Sci., 2018, 115, (14), E 3246 LINK https://doi.org/10.1073/pnas.1718810115 [Google Scholar]
  80. S. Pirbadian, S. E. Barchinger, K. M. Leung, H. S. Byun, Y. Jangir, R. A. Bouhenni, S. B. Reed, M. F. Romine, D. A. Saffarini, L. Shi, Y. A. Gorby, J. H. Golbeck, M. Y. El-Naggar, Proc. Natl. Acad. Sci., 2014, 111, (35), 12883 LINK https://doi.org/10.1073/pnas.1410551111 [Google Scholar]
  81. L. J. C. Jeuken, Environ. Microbiol., 2022, 24, (4), 1835 LINK https://doi.org/10.1111/1462-2920.15942 [Google Scholar]
  82. D. E. Ross, J. M. Flynn, D. B. Baron, J. A. Gralnick, D. R. Bond, PLoS One, 2011, 6, (2), e 16649 LINK https://doi.org/10.1371/journal.pone.0016649 [Google Scholar]
  83. Z.-H. Cheng, J.-R. Xiong, D. Min, L. Cheng, D.-F. Liu, W.-W. Li, F. Jin, M. Yang, H.-Q. Yu, Biotechnol. Bioeng., 2020, 117, (5), 1294 LINK https://doi.org/10.1002/bit.27305 [Google Scholar]
  84. D. Rehnlund, G. Lim, L.-A. Philipp, J. Gescher, iScience, 2022, 25, (2), 103853 LINK https://doi.org/10.1016/j.isci.2022.103853 [Google Scholar]
  85. Y. Wang, M. Lv, Q. Meng, C. Ding, L. Jiang, H. Liu, ACS Nano, 2016, 10, (6), 6331 LINK https://doi.org/10.1021/acsnano.6b02629 [Google Scholar]
  86. P. Chiranjeevi, S. A. Patil, Biotechnol. Adv., 2020, 39, 107468 LINK https://doi.org/10.1016/j.biotechadv.2019.107468 [Google Scholar]
  87. W. Sun, Z. Lin, Q. Yu, S. Cheng, H. Gao, Front. Microbiol., 2021, 12, 727709 LINK https://doi.org/10.3389/fmicb.2021.727709 [Google Scholar]
  88. E. La Cava, A. Guionet, J. Saito, A. Okamoto, Electroanalysis, 2020, 32, (8), 1659 LINK https://doi.org/10.1002/elan.201900686 [Google Scholar]
  89. Z. Wu, J. Wang, J. Liu, Y. Wang, C. Bi, X. Zhang, Microb. Cell Fact., 2019, 18, 15 LINK https://doi.org/10.1186/s12934-019-1067-3 [Google Scholar]
  90. Z. Li, W. Chang, T. Cui, D. Xu, D. Zhang, Y. Lou, H. Qian, H. Song, A. Mol, F. Cao, T. Gu, X. Li, Commun. Mater., 2021, 2, 67 LINK https://doi.org/10.1038/s43246-021-00173-8 [Google Scholar]
  91. Y. Cao, X. Li, F. Li, H. Song, ACS Synth. Biol., 2017, 6, (9), 1679 LINK https://doi.org/10.1021/acssynbio.6b00374 [Google Scholar]
  92. E. A. West, A. Jain, J. A. Gralnick, ACS Synth. Biol., 2017, 6, (9), 1627 LINK https://doi.org/10.1021/acssynbio.6b00349 [Google Scholar]
  93. Y.-C. Yi, I.-S. Ng, J. Taiwan Inst. Chem. Eng., 2020, 109, 8 LINK https://doi.org/10.1016/j.jtice.2020.02.003 [Google Scholar]
  94. A. D. Corts, L. C. Thomason, R. T. Gill, J. A. Gralnick, Sci. Rep., 2019, 9, 39 LINK https://doi.org/10.1038/s41598-018-37025-4 [Google Scholar]
  95. J. S. Gescher, C. D. Cordova, A. M. Spormann, Mol. Microbiol., 2008, 68, (3), 706 LINK https://doi.org/10.1111/j.1365-2958.2008.06183.x [Google Scholar]
  96. B. Schuetz, M. Schicklberger, J. Kuermann, A. M. Spormann, J. Gescher, Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK https://doi.org/10.1128/AEM.01834-09 [Google Scholar]
  97. K. Sturm-Richter, F. Golitsch, G. Sturm, E. Kipf, A. Dittrich, S. Beblawy, S. Kerzenmacher, J. Gescher, Bioresour. Technol., 2015, 186, 89 LINK https://doi.org/10.1016/j.biortech.2015.02.116 [Google Scholar]
  98. J. C. Mayr, J.-H. Grosch, L. Hartmann, L. F. M. Rosa, A. C. Spiess, F. Harnisch, ChemSusChem, 2019, 12, (8), 1631 LINK https://doi.org/10.1002/cssc.201900413 [Google Scholar]
  99. B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, J. M. Jones-Meehan, Environ. Technol., 2006, 40, (8), 2629 LINK https://doi.org/10.1021/es052254w [Google Scholar]
  100. F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. McInerney, Appl. Environ. Microbiol., 1994, 60, (10), 3752 LINK https://doi.org/10.1128/aem.60.10.3752-3759.1994 [Google Scholar]
  101. L. Soussan, J. Riess, B. Erable, M.-L. Delia, A. Bergel, Electrochem. Commun., 2013, 28, 27 LINK https://doi.org/10.1016/j.elecom.2012.11.033 [Google Scholar]
  102. N. Pous, A. A. Carmona-Martínez, A. Vilajeliu-Pons, E. Fiset, L. Bañeras, E. Trably, M. D. Balaguer, J. Colprim, N. Bernet, S. Puig, Biosens. Bioelectron., 2016, 75, 352 LINK https://doi.org/10.1016/j.bios.2015.08.035 [Google Scholar]
  103. T. Ueki, K. P. Nevin, T. L. Woodard, M. A. Aklujkar, D. E. Holmes, D. R. Lovley, Front. Microbiol., 2018, 9, 1512 LINK https://doi.org/10.3389/fmicb.2018.01512 [Google Scholar]
  104. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Nature, 2005, 435, (7045), 1098 LINK https://doi.org/10.1038/nature03661 [Google Scholar]
  105. L. V. Richter, S. J. Sandler, R. M. Weis, J. Bacteriol., 2012, 194, (10), 2551 LINK https://doi.org/10.1128/JB.06366-11 [Google Scholar]
  106. C. L. Giltner, Y. Nguyen, L. L. Burrows, Microbiol. Mol. Biol. Rev., 2012, 76, (4), 740 LINK https://doi.org/10.1128/MMBR.00035-12 [Google Scholar]
  107. S. J. Weaver, D. R. Ortega, M. H. Sazinsky, T. N. Dalia, A. B. Dalia, G. J. Jensen, Nat. Commun., 2020, 11, (1), 5080 LINK https://doi.org/10.1038/s41467-020-18866-y [Google Scholar]
  108. S. L. N. Kilmury, L. L. Burrows, Proc. Natl. Acad., 2016, 113, (21), 6017 LINK https://doi.org/10.1073/pnas.1512947113 [Google Scholar]
  109. B. Bardiaux, G. C. de Amorim, A. Luna Rico, W. Zheng, I. Guilvout, C. Jollivet, M. Nilges, E. H. Egelman, N. Izadi-Pruneyre, O. Francetic, Structure, 2019, 27, (7), P 1082 LINK https://doi.org/10.1016/j.str.2019.03.021 [Google Scholar]
  110. N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B.-C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley, Nat. Nanotechnol., 2011, 6, (9), 573 LINK https://doi.org/10.1038/nnano.2011.119 [Google Scholar]
  111. D. J. F. Walker, R. Y. Adhikari, D. E. Holmes, J. E. Ward, T. L. Woodard, K. P. Nevin, D. R. Lovley, ISME J., 2018, 12, (1), 48 LINK https://doi.org/10.1038/ismej.2017.141 [Google Scholar]
  112. D. J. F. Walker, E. Martz, D. E. Holmes, Z. Zhou, S. S. Nonnenmann, D. R. Lovley, MBio, 2019, 10, (2), e00579-19 LINK https://doi.org/10.1128/mBio.00579-19 [Google Scholar]
  113. M. Vargas, N. S. Malvankar, P.-L. Tremblay, C. Leang, J. A. Smith, P. Patel, O. Snoeyenbos-West, K. P. Nevin, D. R. Lovley, MBio, 2013, 4, (2), e00105-13 LINK https://doi.org/10.1128/mBio.00105-13 [Google Scholar]
  114. Y. Tan, R. Y. Adhikari, N. S. Malvankar, S. Pi, J. E. Ward, T. L. Woodard, K. P. Nevin, Q. Xia, M. T. Tuominen, D. R. Lovley, Small, 2016, 12, (33), 4481 LINK https://doi.org/10.1002/smll.201601112 [Google Scholar]
  115. X. Liu, P.-L. Tremblay, N. S. Malvankar, K. P. Nevin, D. R. Lovley, M. Vargas, Appl. Environ. Microbiol., 2014, 80, (3), 1219 LINK https://doi.org/10.1128/AEM.02938-13 [Google Scholar]
  116. N. S. Malvankar, M. T. Tuominen, D. R. Lovley, Energy Environ. Sci., 2012, 5, (9), 8651 LINK https://doi.org/10.1039/c2ee22330a [Google Scholar]
  117. R. Y. Adhikari, N. S. Malvankar, M. T. Tuominen, D. R. Lovley, RSC Adv., 2016, 6, (10), 8354 LINK https://doi.org/10.1039/c5ra28092c [Google Scholar]
  118. N. L. Ing, T. D. Nusca, A. I. Hochbaum, Phys. Chem. Chem. Phys., 2017, 19, (32), 21791 LINK https://doi.org/10.1039/c7cp03651e [Google Scholar]
  119. S. Lampa-Pastirk, J. P. Veazey, K. A. Walsh, G. T. Feliciano, R. J. Steidl, S. H. Tessmer, G. Reguera, Sci. Rep., 2016, 6, 23517 LINK https://doi.org/10.1038/srep23517 [Google Scholar]
  120. X. Liu, S. Wang, A. Xu, L. Zhang, H. Liu, L. Z. Ma, Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK https://doi.org/10.1007/s00253-018-9484-5 [Google Scholar]
  121. S. E. Yalcin, J. P. O’Brien, Y. Gu, K. Reiss, S. M. Yi, R. Jain, V. Srikanth, P. J. Dahl, W. Huynh, D. Vu, A. Acharya, S. Chaudhuri, T. Varga, V. S. Batista, N. S. Malvankar, Nat. Chem. Biol., 2020, 16, (10), 1136 LINK https://doi.org/10.1038/s41589-020-0623-9 [Google Scholar]
  122. X. Liu, D. J. F. Walker, S. S. Nonnenmann, D. Sun, D. R. Lovley, Mbio, 2021, 12, (4), e02209-21 LINK https://doi.org/10.1128/mBio.02209-21 [Google Scholar]
  123. S. E. Yalcin, N. S. Malvankar, Curr. Opin. Chem. Biol., 2020, 59, 193 LINK https://doi.org/10.1016/j.cbpa.2020.08.004 [Google Scholar]
  124. Y. Ye, X. Liu, K. H. Nealson, C. Rensing, S. Qin, S. Zhou, MBio, 2022, 13, (1), e0382221-21 LINK https://doi.org/10.1128/mbio.03822-21 [Google Scholar]
  125. D. M. Shapiro, G. Mandava, S. E. Yalcin, P. Arranz-Gibert, P. J. Dahl, C. Shipps, Y. Gu, V. Srikanth, A. I. Salazar-Morales, J. P. O’Brien, K. Vanderschuren, D. Vu, V. S. Batista, N. S. Malvankar, F. J. Isaacs, Nat. Commun., 2022, 13, 829 LINK https://doi.org/10.1038/s41467-022-28206-x [Google Scholar]
  126. N. S. Malvankar, S. E. Yalcin, M. T. Tuominen, D. R. Lovley, Nat. Nanotechnol., 2014, 9, (12), 1012 LINK https://doi.org/10.1038/nnano.2014.236 [Google Scholar]
  127. D. X. Cao, H. Yan, V. V. Brus, M. S. Wong, G. C. Bazan, T.-Q. Nguyen, ACS Appl. Mater. Interfaces, 2020, 12, (36), 40778 LINK https://doi.org/10.1021/acsami.0c10795 [Google Scholar]
  128. A. Krige, M. Sjöblom, K. Ramser, P. Christakopoulos, U. Rova, Molecules, 2019, 24, (3), 646 LINK https://doi.org/10.3390/molecules24030646 [Google Scholar]
  129. T. A. Clarke, Curr. Opin. Microbiol., 2022, 66, 56 LINK https://doi.org/10.1016/j.mib.2021.12.003 [Google Scholar]
  130. Y. Tan, R. Y. Adhikari, N. S. Malvankar, J. E. Ward, K. P. Nevin, T. L. Woodard, J. A. Smith, O. L. Snoeyenbos-West, A. E. Franks, M. T. Tuominen, D. R. Lovley, Front. Microbiol., 2016, 7, 980 LINK https://doi.org/10.3389/fmicb.2016.00980 [Google Scholar]
  131. C. Zhao, J. Wu, Y. Ding, V. B. Wang, Y. Zhang, S. Kjelleberg, C. J. S. Loo, B. Cao, Q. Zhang, ChemElectroChem, 2015, 2, (5), 654 LINK https://doi.org/10.1002/celc.201402458 [Google Scholar]
  132. D. R. Lovley, Curr. Opin. Electrochem., 2017, 4, (1), 190 LINK https://doi.org/10.1016/j.coelec.2017.08.015 [Google Scholar]
  133. S. Sure, M. L. Ackland, A. A. J. Torriero, A. Adholeya, M. Kochar, Microbiology, 2016, 162, (12), 2017 LINK https://doi.org/10.1099/mic.0.000382 [Google Scholar]
/content/journals/10.1595/205651322X16548607638938
Loading
/content/journals/10.1595/205651322X16548607638938
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test