Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

The assessment of lithium-ion battery (LIB) safety is a multiscale challenge: from the whole-cell architecture to its composite internal three-dimensional (3D) microstructures. Substantial research is required to standardise failure assessments and optimise cell designs to reduce the risks of LIB failure. In this two-part work, the failure response of a 1 Ah layered pouch cell with a commercially available nickel manganese cobalt (NMC) cathode and graphite anode at 100% state of charge (SOC) (4.2 V) is investigated. The mechanisms of two abuse methods: mechanical (by nail penetration) and thermal (by accelerating rate calorimetry) are compared by using a suite of post-mortem analysis methods.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16595441894422
2022-08-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Patel_pt1_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16595441894422&mimeType=html&fmt=ahah

References

  1. Blomgren G. E. J. Electrochem. Soc., 2017, 164, (1), A5019 LINK https://doi.org/10.1149/2.0251701jes [Google Scholar]
  2. Nitta N., Wu F., Lee J. T., and Yushin G. Mater. Today, 2015, 18, (5), 252 LINK https://doi.org/10.1016/j.mattod.2014.10.040 [Google Scholar]
  3. Doughty D. H., and Roth E. P. Electrochem. Soc. Interface, 2012, 21, (2), 37 LINK https://doi.org/10.1149/2.F03122if [Google Scholar]
  4. Balakrishnan P. G., Ramesh R., and Prem Kumar T. J. Power Sources, 2006, 155, (2), 401 LINK https://doi.org/10.1016/j.jpowsour.2005.12.002 [Google Scholar]
  5. Jacoby M. ‘Assessing the Safety of Lithium-Ion Batteries’, Chemical & Engineering News, Washington, DC, USA, 11th February, 2013 LINK https://cen.acs.org/articles/91/i6/Assessing-Safety-Lithium-Ion-Batteries.html [Google Scholar]
  6. Bravo Diaz L., He X., Hu Z., Restuccia F., Marinescu M., Barreras J. V., Patel Y., Offer G., and Rein G. J. Electrochem. Soc., 2020, 167, 090559 LINK https://doi.org/10.1149/1945-7111/aba8b9 [Google Scholar]
  7. Madway G., Hamada K., Negishi M., Takenaka K., and Joyce R. ‘Sony Recalls PC Batteries’, ed. Reuters, London, UK, 31st October, 2008 LINK https://www.reuters.com/article/us-sony-battery/sony-recalls-pc-batteries-idUSTRE49U1EZ20081031 [Google Scholar]
  8. Lee S. Y. ‘Note 7 Fiasco Could Burn a $17 Billion Hole in Samsung Accounts’, Reuters, London, UK, 11th October, 2016 LINK https://www.reuters.com/article/us-samsung-elec-smartphones-costs/note-7-fiasco-could-burn-a-17-billion-hole-in-samsung-accounts-idUSKCN12B0FX [Google Scholar]
  9. Loveridge M. J., Remy G., Kourra N., Genieser R., Barai A., Lain M. J., Guo Y., Amor-Segan M., Williams M. A., Amietszajew T., Ellis M., Bhagat R., and Greenwood D. Batteries, 2018, 4, (1), 3 LINK https://doi.org/10.3390/batteries4010003 [Google Scholar]
  10. Musk E. ‘Model S Fire’, Tesla, Austin, USA, 4th October, 2013 LINK https://www.tesla.com/en_GB/blog/model-s-fire [Google Scholar]
  11. Jin H., Shepardson D., ‘Tesla Top-of-Range Car Caught Fire while Owner was Driving, Lawyer Says’, ed. and Cushing C. Reuters, London, UK, 2nd July, 2021 LINK https://www.reuters.com/business/autos-transportation/tesla-top-of-range-car-caught-fire-while-owner-was-driving-lawyer-says-2021-07-02/ [Google Scholar]
  12. Nedelea A. ‘Jaguar I-Pace Catches Fire while Charging in Hungary’, InsideEVs, Miami, USA, 29th October, 2021 LINK https://insideevs.com/news/544255/jaguar-ipace-charging-fire-hungary/ [Google Scholar]
  13. Koshika K. ‘Statistics and Analysis on Fire Accidents for EVs: China’, EVS 16th Session,Gothenburg, Sweden,11th–13th September, 2018, Vehicle Regulations Informal Working Groups, UNECE Transport Division, Geneva, Switzerland, 2018 LINK https://wiki.unece.org/download/attachments/60358932/EVS16-H14%20%5BCN%5DACT02%20%26%2005%20Statistics%20and%20Analysis%20on%20fire%20accidents%20for%20EVs%20-China-0829.pdf?api=v2 [Google Scholar]
  14. Fisher G. ‘Pouch, Cylindrical or Prismatic: Which Battery Format will Rule the Market?’, Addionics, London, UK, 14th April, 2021 LINK https://www.addionics.com/post/pouch-cylindrical-or-prismatic-which-battery-format-will-rule-the-market [Google Scholar]
  15. Lamb J., Orendorff C. J., Steele L. A. M., and Spangler S. W. J. Power Sources, 2015, 283, 517 LINK https://doi.org/10.1016/j.jpowsour.2014.10.081 [Google Scholar]
  16. Chen Y., Kang Y., Zhao Y., Wang L., Liu J., Li Y., Liang Z., He X., Li X., Tavajohi N., and Li B. J. Energy Chem., 2021, 59, 83 LINK https://doi.org/10.1016/j.jechem.2020.10.017 [Google Scholar]
  17. Doughty D. “Li Ion Battery Safety and Abuse Tolerance Report: A Systematic Account of Why Battery Safety Incidents Occur and How to Avoid Them”, Total Battery Consulting, Petaluma, USA, 2017 LINK https://totalbatteryconsulting.com/industry-reports/Battery-safety-report/overview.html [Google Scholar]
  18. Feng X., Ouyang M., Liu X., Lu L., Xia Y., and He X. Energy Storage Mater., 2018, 10, 246 LINK https://doi.org/10.1016/j.ensm.2017.05.013 [Google Scholar]
  19. ‘Safety Requirements and Test Methods for Traction Battery of Electric Vehicle’, GB/T 31485-2015, General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China (AQSIQ), Beijing, China, 2015 LINK https://www.chinesestandard.net/PDF.aspx/GBT31485-2015 [Google Scholar]
  20. Mendoza-Hernandez O. S., Ishikawa H., Nishikawa Y., Maruyama Y., and Umeda M. J. Power Sources, 2015, 280, 499 LINK https://doi.org/10.1016/j.jpowsour.2015.01.143 [Google Scholar]
  21. Mao B., Chen H., Cui Z., Wu T., and Wang Q. Int. J. Heat Mass Transfer, 2018, 122, 1103 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.036 [Google Scholar]
  22. Ruiz V., Pfrang A., Kriston A., Omar N., Van den Bossche P., and Boon-Brett L. Renew. Sustain. Energy Rev., 2018, 81, (1), 1427 LINK https://doi.org/10.1016/j.rser.2017.05.195 [Google Scholar]
  23. Spotnitz R., and Franklin J. J. Power Sources, 2003, 113, (1), 81 LINK https://doi.org/10.1016/S0378-7753(02)00488-3 [Google Scholar]
  24. Maleki H., Deng G., Anani A., and Howard J. J. Electrochem. Soc., 1999, 146, (9), 3224 LINK https://doi.org/10.1149/1.1392458 [Google Scholar]
  25. Roth E. P., and Doughty D. H. J. Power Sources, 2004, 128, (2), 308 LINK https://doi.org/10.1016/j.jpowsour.2003.09.068 [Google Scholar]
  26. Bugryniec P. J., Davidson J. N., Cumming D. J., and Brown S. F. J. Power Sources, 2019, 414, 557 LINK https://doi.org/10.1016/j.jpowsour.2019.01.013 [Google Scholar]
  27. Chen W.-C., Wang Y.-W., and Shu C.-M. J. Power Sources, 2016, 318, 200 LINK https://doi.org/10.1016/j.jpowsour.2016.04.001 [Google Scholar]
  28. Feng X., Fang M., He X., Ouyang M., Lu L., Wang H., and Zhang M. J. Power Sources, 2014, 255, 294 LINK https://doi.org/10.1016/j.jpowsour.2014.01.005 [Google Scholar]
  29. Wang Q., Mao B., Stoliarov S. I., and Sun J. Prog. Energy Combust. Sci., 2019, 73, 95 LINK https://doi.org/10.1016/j.pecs.2019.03.002 [Google Scholar]
  30. Hatchard T. D., MacNeil D. D., Basu A., and Dahn J. R. J. Electrochem. Soc., 2001, 148, (7), A 755 LINK https://doi.org/10.1149/1.1377592 [Google Scholar]
  31. Kim G.-H., Pesaran A., and Spotnitz R. J. Power Sources, 2007, 170, (2), 476 LINK https://doi.org/10.1016/j.jpowsour.2007.04.018 [Google Scholar]
  32. Ren D., Liu X., Feng X., Lu L., Ouyang M., Li J., and He X. Appl. Energy, 2018, 228, 633 LINK https://doi.org/10.1016/j.apenergy.2018.06.126 [Google Scholar]
  33. Lopez C. F., Jeevarajan J. A., and Mukherjee P. P. J. Electrochem. Soc., 2015, 162, (10), A 2163 LINK https://doi.org/10.1149/2.0751510jes [Google Scholar]
  34. Zhu J., Wierzbicki T., and Li W. J. Power Sources, 2018, 378, 153 LINK https://doi.org/10.1016/j.jpowsour.2017.12.034 [Google Scholar]
  35. Waldmann T., Iturrondobeitia A., Kasper M., Ghanbari N., Aguesse F., Bekaert E., Daniel L., Genies S., Jiménez Gordon I., Löble M. W., De Vito E., and Wohlfahrt-Mehrens M. J. Electrochem. Soc., 2016, 163, (10), A 2149 LINK https://doi.org/10.1149/2.1211609jes [Google Scholar]
  36. Mikolajczak C. J., Hayes T., Megerle M. V, and Wu M. ‘A Scientific Methodology for Investigation of a Lithium Ion Battery Failure’, 2007 IEEE International Conference on Portable Information Devices, Orlando, Florida, USA, 25th–29th May, 2007, IEEE, Piscataway, USA, 6 pp LINK https://doi.org/10.1109/PORTABLE.2007.53 [Google Scholar]
  37. Williard N., Sood B., Osterman M., and Pecht M. J. Mater. Sci.: Mater. Electron., 2011, 22, (10), 1616 LINK https://doi.org/10.1007/s10854-011-0452-4 [Google Scholar]
  38. Finegan D. P., Scheel M., Robinson J. B., Tjaden B., Hunt I., Mason T. J., Millichamp J., Di Michiel M., Offer G. J., Hinds G., Brett D. J. L., and Shearing P. R. Nat. Commun., 2015, 6, 6924 LINK https://doi.org/10.1038/ncomms7924 [Google Scholar]
  39. Finegan D. P., Darcy E., Keyser M., Tjaden B., Heenan T. M. M., Jervis R., Bailey J. J., Malik R., Vo N. T., Magdysyuk O. V., Atwood R., Drakopoulos M., DiMichiel M., Rack A., Hinds G., Brett D. J. L., and Shearing P. R. Energy Environ. Sci., 2017, 10, (6), 1377 LINK https://doi.org/10.1039/c7ee00385d [Google Scholar]
  40. Finegan D. P., Tjaden B., Heenan T. M. M., Jervis R., Di Michiel M., Rack A., Hinds G., Brett D. J. L., and Shearing P. R. J. Electrochem. Soc, 2017, 164, (13), A 3285 LINK https://doi.org/10.1149/2.1501713jes [Google Scholar]
  41. Patel D., Robinson J. B., Ball S., Brett D. J. L., and Shearing P. R. J. Electrochem. Soc., 2020, 167, (9), 090511 LINK https://doi.org/10.1149/1945-7111/ab7fb6 [Google Scholar]
  42. Yokoshima T., Mukoyama D., Maeda F., Osaka T., Takazawa K., Egusa S., Naoi S., Ishikura S., and Yamamoto K. J. Power Sources, 2018, 393, 67 LINK https://doi.org/10.1016/j.jpowsour.2018.04.092 [Google Scholar]
  43. Sahraei E., Kahn M., Meier J., and Wierzbicki T. RSC Adv., 2015, 5, (98), 80369 LINK https://doi.org/10.1039/c5ra17865g [Google Scholar]
  44. Ziesche R. F., Arlt T., Finegan D. P., Heenan T. M. M., Tengattini A., Baum D., Kardjilov N., Markötter H., Manke I., Kockelmann W., Brett D. J. L., and Shearing P. R. Nat. Commun., 2020, 11, 777 LINK https://doi.org/10.1038/s41467-019-13943-3 [Google Scholar]
  45. Zhang N., and Tang H. J. Power Sources, 2012, 218, 52 LINK https://doi.org/10.1016/j.jpowsour.2012.06.071 [Google Scholar]
  46. Wu W., Ma R., Liu J., Liu M., Wang W., and Wang Q. Int. J. Heat Mass Transfer, 2021, 170, 121024 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2021.121024 [Google Scholar]
  47. Finegan D. P., Scheel M., Robinson J. B., Tjaden B., Di Michiel M., Hinds G., Brett D. J. L., and Shearing P. R. Phys. Chem. Chem. Phys., 2016, 18, (45), 30912 LINK https://doi.org/10.1039/C6CP04251A [Google Scholar]
  48. Yao X.-Y., and Pecht M. G. IEEE Access, 2019, 7, 24082 LINK https://doi.org/10.1109/ACCESS.2019.2899793 [Google Scholar]
  49. Salvo L., Suéry M., Marmottant A., Limodin N., and Bernard D. Comptes Rendus Phys., 2010, 11, (9–10), 641 LINK https://doi.org/10.1016/j.crhy.2010.12.003 [Google Scholar]
  50. Cooper S. J., Bertei A., Shearing P. R., Kilner J. A., and Brandon N. P. SoftwareX, 2016, 5, 203 LINK https://doi.org/10.1016/j.softx.2016.09.002 [Google Scholar]
  51. Bailey J. J., Heenan T. M. M., Finegan D. P., Lu X., Daemi S. R., Iacoviello F., Backeberg N. R., Taiwo O. O., Brett D. J. L., Atkinson A., and Shearing P. R. J. Microsc., 2017, 267, (3), 384 LINK https://doi.org/10.1111/jmi.12577 [Google Scholar]
  52. Patel D., Reid H., Ball S., Brett D. J. L., and Shearing Paul R. Johnson Matthey Technol. Rev., 2023, 67, (1), 47 LINK https://technology.matthey.com/article/67/1/47-59/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16595441894422
Loading
/content/journals/10.1595/205651322X16595441894422
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error