Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

The cathodes of spent ternary lithium-ion batteries (LIBs) are rich in nonferrous metals, such as lithium, nickel, cobalt and manganese, which are important strategic raw materials and also potential sources of environmental pollution. Finding ways to extract these valuable metals cleanly and efficiently from spent cathodes is of great significance for sustainable development of the LIBs industry. In the light of low energy consumption, ‘green’ processing and high recovery efficiency, this paper provides an overview of different recovery technologies to recycle valuable metals from cathode materials of spent ternary LIBs. Development trends and application prospects for different recovery strategies for cathode materials from spent ternary LIBs are also predicted. We conclude that a highly economic recovery system: alkaline solution dissolution/calcination pretreatment → HSO leaching → HO reduction → coprecipitation regeneration of nickel cobalt manganese (NCM) will become the dominant stream for recycling retired NCM batteries. Furthermore, emerging advanced technologies, such as deep eutectic solvents (DESs) extraction and one–step direct regeneration/recovery of NCM cathode materials are preferred methods to substitute conventional regeneration systems in the future.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15899814766688
2021-01-01
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Cui_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15899814766688&mimeType=html&fmt=ahah

References

  1. “Statistical Review of World Energy”,69th Edn.,bp Plc, London, UK, 2020, 68 pp LINK https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Google Scholar]
  2. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., and Wu F. Chem. Rev., 2020, 120, (14), 7020 LINK https://doi.org/10.1021/acs.chemrev.9b00535 [Google Scholar]
  3. Khalifa H., El-Safty S. A., Shenashen M. A., Reda A., and Elmarakbi A. Energy Storage Mater., 2020, 26, 260 LINK http://doi.org/10.1016/j.ensm.2019.12.009 [Google Scholar]
  4. Khalifa H., El-Safty S. A., Reda A., Elmarakbi A., Metawa H., and Shenashen M. A. Appl. Mater. Today, 2020, 19, 100590 LINK https://doi.org/10.1016/j.apmt.2020.100590 [Google Scholar]
  5. Khalifa H., El-Safty S. A., Reda A., Shenashen M. A., Selim M. M., Elmarakbi A., and Metawa H. A. Nano-Micro Lett., 2019, 11, 84 LINK https://doi.org/10.1007/s40820-019-0315-8 [Google Scholar]
  6. Liu W., Oh P., Liu X., Lee M.-J., Cho W., Chae S., Kim Y., and Cho J. Angew. Chem. Int. Ed., 2015, 54, (15), 4440 LINK https://doi.org/10.1002/anie.201409262 [Google Scholar]
  7. Desjardins J. ‘China Leading the Charge for Lithium-Ion Megafactories’,Visual Capitalist, Vancouver, Canada, 17th February, 2017 LINK https://www.visualcapitalist.com/china-leading-charge-lithium-ion-megafactories/ [Google Scholar]
  8. “EV Charging Equipment Market Overview”,Navigant Research, USA, 2019 [Google Scholar]
  9. Zheng X., Zhu Z., Lin X., Zhang Y., He Y., Cao H., and Sun Z. Engineering, 2018, 4, (3), 361 LINK https://doi.org/10.1016/j.eng.2018.05.018 [Google Scholar]
  10. Träger T., Friedrich B., and Weyhe R. Chem. Ing. Tech., 2015, 87, (11), 1550 LINK https://doi.org/10.1002/cite.201500066 [Google Scholar]
  11. Li L., Ge J., Chen R., Wu F., Chen S., and Zhang X. Waste Manag., 2010, 30, (12), 2615 LINK https://doi.org/10.1016/j.wasman.2010.08.008 [Google Scholar]
  12. Cusenza M. A., Bobba S., Ardente F., Cellura M., and Di Persio F. J. Clean. Prod., 2019, 215, 634 LINK https://doi.org/10.1016/j.jclepro.2019.01.056 [Google Scholar]
  13. Zheng J., Liu T., Hu Z., Wei Y., Song X., Ren Y., Wang W., Rao M., Lin Y., Chen Z., Lu J., Wang C., Amine K., and Pan F. J. Am. Chem. Soc., 2016, 138, (40), 13326 LINK https://doi.org/10.1021/jacs.6b07771 [Google Scholar]
  14. Song D., Wang X., Nie H., Shi H., Wang D., Guo F., Shi X., and Zhang L. J. Power Sources, 2014, 249, 137 LINK https://doi.org/10.1016/j.jpowsour.2013.10.062 [Google Scholar]
  15. Larcher D., and Tarascon J.-M. Nat. Chem., 2015, 7, (1), 19 LINK https://doi.org/10.1038/nchem.2085 [Google Scholar]
  16. Chagnes A., and Pospiech B. J. Chem. Technol. Biotechnol., 2013, 88, (7), 1191 LINK https://doi.org/10.1002/jctb.4053 [Google Scholar]
  17. Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J., and Liang B. J. Power Sources, 2008, 177, (2), 512 LINK https://doi.org/10.1016/j.jpowsour.2007.11.074 [Google Scholar]
  18. Li J., Shi P., Wang Z., Chen Y., and Chang C.-C. Chemosphere, 2009, 77, (8), 1132 LINK https://doi.org/10.1016/j.chemosphere.2009.08.040 [Google Scholar]
  19. Huang B., Pan Z., Su X., and An L. J. Power Sources, 2018, 399, 274 LINK https://doi.org/10.1016/j.jpowsour.2018.07.116 [Google Scholar]
  20. Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., and Tripathi V. S. Hydrometallurgy, 2015, 151, 73 LINK https://doi.org/10.1016/j.hydromet.2014.11.006 [Google Scholar]
  21. da Silveira Leite D., Carvalho P. L. G., de Lemos L. R., Mageste A. B., and Rodrigues G. D. Hydrometallurgy, 2017, 169, 245 LINK https://doi.org/10.1016/j.hydromet.2017.01.002 [Google Scholar]
  22. Zou H., Gratz E., Apelian D., and Wang Y. Green Chem., 2013, 15, (5), 1183 LINK https://doi.org/10.1039/c3gc40182k [Google Scholar]
  23. Shin E. J., Kim S., Noh J.-K., Byun D., Chung K. Y., Kim H.-S., and Cho B.-W. J. Mater. Chem. A, 2015, 3, (21), 11493 LINK https://doi.org/10.1039/c5ta02540k [Google Scholar]
  24. Sonoc A. C., Jeswiet J., Murayama N., and Shibata J. Hydrometallurgy, 2018, 175, 133 LINK https://doi.org/10.1016/j.hydromet.2017.10.004 [Google Scholar]
  25. Chen W.-S., and Ho H.-J. Metals, 2018, 8, (5), 321 LINK https://doi.org/10.3390/met8050321 [Google Scholar]
  26. Chen X., Luo C., Zhang J., Kong J., and Zhou T. ACS Sustain. Chem. Eng., 2015, 3, (12), 3104 LINK https://doi.org/10.1021/acssuschemeng.5b01000 [Google Scholar]
  27. Yang Y., Yang H., Cao H., Wang Z., Liu C., Sun Y., Zhao H., Zhang Y., and Sun Z. J. Clean. Prod., 2019, 236, 117576 LINK https://doi.org/10.1016/j.jclepro.2019.07.051 [Google Scholar]
  28. Wang M.-M., Zhang C.-C., and Zhang F.-S. Waste Manag., 2016, 51, 239 LINK https://doi.org/10.1016/j.wasman.2016.03.006 [Google Scholar]
  29. Pinna E. G., Ruiz M. C., Ojeda M. W., and Rodriguez M. H. Hydrometallurgy, 2017, 167, 66 LINK https://doi.org/10.1016/j.hydromet.2016.10.024 [Google Scholar]
  30. Meshram P., Abhilash, Pandey B. D., Mankhand T. R., and Deveci H. J. Ind. Eng. Chem., 2016, 43, 117 LINK https://doi.org/10.1016/j.jiec.2016.07.056 [Google Scholar]
  31. Yu M., Zhang Z., Xue F., Yang B., Guo G., and Qiu J. Sep. Purif. Technol., 2019, 215, 398 LINK https://doi.org/10.1016/j.seppur.2019.01.027 [Google Scholar]
  32. Chen X., Guo C., Ma H., Li J., Zhou T., Cao L., and Kang D. Waste Manag., 2018, 75, 459 LINK https://doi.org/10.1016/j.wasman.2018.01.021 [Google Scholar]
  33. Chen X., Fan B., Xu L., Zhou T., and Kong J. J. Clean. Prod., 2016, 112, (4), 3562 LINK https://doi.org/10.1016/j.jclepro.2015.10.132 [Google Scholar]
  34. Bian D., Sun Y., Li S., Tian Y., Yang Z., Fan X., and Zhang W. Electrochim. Acta, 2016, 190, 134 LINK https://doi.org/10.1016/j.electacta.2015.12.114 [Google Scholar]
  35. Li J., Wang G., and Xu Z. J. Hazard. Mater., 2016, 302, 97 LINK https://doi.org/10.1016/j.jhazmat.2015.09.050 [Google Scholar]
  36. Prabaharan G., Barik S. P., Kumar N., and Kumar L. Waste Manag., 2017, 68, 527 LINK https://doi.org/10.1016/j.wasman.2017.07.007 [Google Scholar]
  37. Gomaa H., Shenashen M. A., Yamaguchi H., Alamoudi A. S., and El-Safty S. A. Green Chem., 2018, 20, (8), 1841 LINK https://doi.org/10.1039/c7gc03673f [Google Scholar]
  38. Gomaa H., El-Safty S., Shenashen M. A., Kawada S., Yamaguchi H., Abdelmottaleb M., and Cheira M. F. ACS Sustain. Chem. Eng., 2018, 6, (11), 13813 LINK https://doi.org/10.1021/acssuschemeng.8b01906 [Google Scholar]
  39. Gratz E., Sa Q., Apelian D., and Wang Y. J. Power Sources, 2014, 262, 255 LINK https://doi.org/10.1016/j.jpowsour.2014.03.126 [Google Scholar]
  40. Boxall N. J., Adamek N., Cheng K. Y., Haque N., Bruckard W., and Kaksonen A. H. Waste Manag., 2018, 74, 435 LINK https://doi.org/10.1016/j.wasman.2017.12.033 [Google Scholar]
  41. Li M., Lu J., Chen Z., and Amine K. Adv. Mater., 2018, 30, (33), 1800561 LINK https://doi.org/10.1002/adma.201800561 [Google Scholar]
  42. Pillot C. ‘The Rechargeable Battery Market and Main Trends 2015-2025’,18th International Meeting on Lithium Batteries,20th June, 2016,Chicago, USA,Avicenne Energy, Paris, France, 2016 LINK http://www.avicenne.com/pdf/Fort_Lauderdale_Tutorial_C_Pillot_March2015.pdf [Google Scholar]
  43. Zhou S., Cui Z., Mei T., Wang X., and Qian Y. Mater. Today Energy, 2019, 14, 100363 LINK https://doi.org/10.1016/j.mtener.2019.100363 [Google Scholar]
  44. Liu S., Xiong L., and He C. J. Power Sources, 2014, 261, 285 LINK https://doi.org/10.1016/j.jpowsour.2014.03.083 [Google Scholar]
  45. Shi Y., Zhang M., Meng Y. S., and Chen Z. Adv. Energy Mater., 2019, 9, (20), 1900454 LINK https://doi.org/10.1002/aenm.201900454 [Google Scholar]
  46. Randell P. “Waste Lithium-Ion Battery Projections: Lithium-Ion Forums: Recycling, Transport and Warehousing”,Randall Environmental Consulting Pty Ltd, Woodend, Australia, 19th July, 2016, 18 pp LINK https://www.environment.gov.au/system/files/resources/dd827a0f-f9fa-4024-b1e0-5b11c2c43748/files/waste-lithium-battery-projections.pdf [Google Scholar]
  47. Lv W., Wang Z., Cao H., Sun Y., Zhang Y., and Sun Z. ACS Sustain. Chem. Eng., 2018, 6, (2), 1504 LINK https://doi.org/10.1021/acssuschemeng.7b03811 [Google Scholar]
  48. Zeng X., Li J., and Singh N. Crit. Rev. Environ. Sci. Technol., 2014, 44, (10), 1129 LINK https://doi.org/10.1080/10643389.2013.763578 [Google Scholar]
  49. Ribière P., Grugeon S., Morcrette M., Boyanov S., Laruelle S., and Marlair G. Energy Environ. Sci., 2012, 5, (1), 5271 LINK https://doi.org/10.1039/c1ee02218k [Google Scholar]
  50. ‘National Minerals Information Center: Commodity Statistics and Information’,United States Geological Survey (USGS), Reston, USA:https://www.usgs.gov/centers/nmic/commodity-statistics-and-information (Accessed on 14th May 2021) [Google Scholar]
  51. Boxall N. J., King S., Cheng K. Y., Gumulya Y., Bruckard W., and Kaksonen A. H. Miner. Eng., 2018, 128, 45 LINK https://doi.org/10.1016/j.mineng.2018.08.030 [Google Scholar]
  52. “Study on the Review of the List of Critical Raw Materials: Critical Raw Materials Factsheets”,European Union, Brussels, Belgium, June, 2017, 515 pp LINK https://doi.org/10.2873/398823 [Google Scholar]
  53. El Haddad J., Canioni L., and Bousquet B. Spectrochim. Acta Part B: At. Spectrosc., 2014, 101, 171 LINK https://doi.org/10.1016/j.sab.2014.08.039 [Google Scholar]
  54. Yang Y., Xu S., and He Y. Waste Manag., 2017, 64, 219 LINK https://doi.org/10.1016/j.wasman.2017.03.018 [Google Scholar]
  55. Li H., Chen Y., Song W., and Feng Z. Chem. Ind. Eng. Prog., 2019, 38, (02), 921 LINK http://doi.org/10.16085/j.issn.1000-6613.2018-0359 [Google Scholar]
  56. Yao Y., Zhu M., Zhao Z., Tong B., Fan Y., and Hua Z. ACS Sustain. Chem. Eng., 2018, 6, (11), 13611 LINK https://doi.org/10.1021/acssuschemeng.8b03545 [Google Scholar]
  57. Zhao S., Li G., He W., Huang J., and Zhu H. Waste Manag. Res., 2019, 37, (11), 1142 LINK https://doi.org/10.1177/0734242x19857130 [Google Scholar]
  58. Fu Y., He Y., Chen H., Ye C., Lu Q., Li R., Xie W., and Wang J. J. Ind. Eng. Chem., 2019, 79, 154 LINK https://doi.org/10.1016/j.jiec.2019.06.023 [Google Scholar]
  59. Nan J., Han D., and Zuo X. J. Power Sources, 2005, 152, 278 LINK https://doi.org/10.1016/j.jpowsour.2005.03.134 [Google Scholar]
  60. Paulino J. F., Busnardo N. G., and Afonso J. C. J. Hazard. Mater., 2008, 150, (3), 843 LINK https://doi.org/10.1016/j.jhazmat.2007.10.048 [Google Scholar]
  61. Zhang X., Xie Y., Cao H., Nawaz F., and Zhang Y. Waste Manag., 2014, 34, (9), 1715 LINK https://doi.org/10.1016/j.wasman.2014.05.023 [Google Scholar]
  62. Almeida J. R., Moura M. N., Barrada R. V., Barbieri E. M. S., Carneiro M. T. W. D., Ferreira S. A. D., de Fátima Fontes Lelis M., de Freitas M. B. J. G., and Brandão G. P. Sci. Total Environ., 2019, 685, 589 LINK https://doi.org/10.1016/j.scitotenv.2019.05.243 [Google Scholar]
  63. Krüger S., Hanisch C., Kwade A., Winter M., and Nowak S. J. Electroanal. Chem., 2014, 726, 91 LINK https://doi.org/10.1016/j.jelechem.2014.05.017 [Google Scholar]
  64. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manag., 2015, 46, 523 LINK https://doi.org/10.1016/j.wasman.2015.08.035 [Google Scholar]
  65. Hu J., Zhang J., Li H., Chen Y., and Wang C. J. Power Sources, 2017, 351, 192 LINK https://doi.org/10.1016/j.jpowsour.2017.03.093 [Google Scholar]
  66. Meshram P., Pandey B. D., and Mankhand T. R. Waste Manag., 2015, 45, 306 LINK https://doi.org/10.1016/j.wasman.2015.05.027 [Google Scholar]
  67. Xiao J., Li J., and Xu Z. Environ. Sci. Technol., 2020, 54, (1), 9 LINK https://doi.org/10.1021/acs.est.9b03725 [Google Scholar]
  68. Joulié M., Laucournet R., and Billy E. J. Power Sources, 2014, 247, 551 LINK https://doi.org/10.1016/j.jpowsour.2013.08.128 [Google Scholar]
  69. Meshram P., Abhilash, Pandey B. D., Mankhand T. R., and Deveci H. J. Metals, 2016, 68, (10), 2613 LINK https://doi.org/10.1007/s11837-016-2032-9 [Google Scholar]
  70. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manag., 2017, 64, 171 LINK https://doi.org/10.1016/j.wasman.2017.02.011 [Google Scholar]
  71. He L.-P., Sun S.-Y., Mu Y.-Y., Song X.-F., and Yu J.-G. ACS Sustain. Chem. Eng., 2017, 5, (1), 714 LINK https://doi.org/10.1021/acssuschemeng.6b02056 [Google Scholar]
  72. Gao W., Zhang X., Zheng X., Lin X., Cao H., Zhang Y., and Sun Z. Environ. Sci. Technol., 2017, 51, (3), 1662 LINK https://doi.org/10.1021/acs.est.6b03320 [Google Scholar]
  73. Zhang X., Cao H., Xie Y., Ning P., An H., You H., and Nawaz F. Sep. Purif. Technol., 2015, 150, 186 LINK https://doi.org/10.1016/j.seppur.2015.07.003 [Google Scholar]
  74. Sun C., Xu L., Chen X., Qiu T., and Zhou T. Waste Manage. Res.: J. Sustain. Circ. Econ., 2018, 36, (2), 113 LINK https://doi.org/10.1177/0734242x17744273 [Google Scholar]
  75. Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., and Sun Z. J. Clean. Prod., 2018, 178, 833 LINK https://doi.org/10.1016/j.jclepro.2018.01.040 [Google Scholar]
  76. Liu P., Xiao L., Chen Y., Tang Y., Wu J., and Chen H. J. Alloys Compd., 2019, 783, 743 LINK https://doi.org/10.1016/j.jallcom.2018.12.226 [Google Scholar]
  77. Zhuang L., Sun C., Zhou T., Li H., and Dai A. Waste Manag., 2019, 85, 175 LINK https://doi.org/10.1016/j.wasman.2018.12.034 [Google Scholar]
  78. Willner J., Kadukova J., Fornalczyk A., and Saternus M. Metalurgija, 2015, 54, (1), 255 LINK https://hrcak.srce.hr/index.php?id_clanak_jezik=187243&show=clanak [Google Scholar]
  79. Biswal B. K., Jadhav U. U., Madhaiyan M., Ji L., Yang E.-H., and Cao B. ACS Sustain. Chem. Eng., 2018, 6, (9), 12343 LINK https://doi.org/10.1021/acssuschemeng.8b02810 [Google Scholar]
  80. Niu Z., Huang Q., Xin B., Qi C., Hu J., Chen S., and Li Y. J. Chem. Technol. Biotechnol., 2016, 91, (3), 608 LINK https://doi.org/10.1002/jctb.4611 [Google Scholar]
  81. Bahaloo-Horeh N., and Mousavi S. M. Waste Manag., 2017, 60, 666 LINK https://doi.org/10.1016/j.wasman.2016.10.034 [Google Scholar]
  82. Naseri T., Bahaloo-Horeh N., and Mousavi S. M. J. Environ. Manage., 2019, 235, 357 LINK https://doi.org/10.1016/j.jenvman.2019.01.086 [Google Scholar]
  83. Heydarian A., Mousavi S. M., Vakilchap F., and Baniasadi M. J. Power Sources, 2018, 378, 19 LINK https://doi.org/10.1016/j.jpowsour.2017.12.009 [Google Scholar]
  84. Bahaloo-Horeh N., Mousavi S. M., and Baniasadi M. J. Clean. Prod., 2018, 197, (1), 1546 LINK https://doi.org/10.1016/j.jclepro.2018.06.299 [Google Scholar]
  85. Horeh N. B., Mousavi S. M., and Shojaosadati S. A. J. Power Sources, 2016, 320, 257 LINK https://doi.org/10.1016/j.jpowsour.2016.04.104 [Google Scholar]
  86. Xin Y., Guo X., Chen S., Wang J., Wu F., and Xin B. J. Clean. Prod., 2016, 116, 249 LINK https://doi.org/10.1016/j.jclepro.2016.01.001 [Google Scholar]
  87. Swain B. J. Chem. Technol. Biotechnol., 2018, 93, (2), 311 LINK http://doi.org/10.1002/jctb.5332 [Google Scholar]
  88. Huang T., Song D., Liu L., and Zhang S. Sep. Purif. Technol., 2019, 215, 51 LINK https://doi.org/10.1016/j.seppur.2019.01.002 [Google Scholar]
  89. Li H., Xing S., Liu Y., Li F., Guo H., and Kuang G. ACS Sustain. Chem. Eng., 2017, 5, (9), 8017 LINK https://doi.org/10.1021/acssuschemeng.7b01594 [Google Scholar]
  90. Zhang X., Li L., Fan E., Xue Q., Bian Y., Wu F., and Chen R. Chem. Soc. Rev., 2018, 47, (19), 7239 LINK https://doi.org/10.1039/c8cs00297e [Google Scholar]
  91. Meshram P., Pandey B. D., and Mankhand T. R. Chem. Eng. J., 2015, 281, 418 LINK https://doi.org/10.1016/j.cej.2015.06.071 [Google Scholar]
  92. Granata G., Pagnanelli F., Moscardini E., Takacova Z., Havlik T., and Toro L. J. Power Sources, 2012, 212, 205 LINK https://doi.org/10.1016/j.jpowsour.2012.04.016 [Google Scholar]
  93. Zhang J., Hu J., Zhang W., Chen Y., and Wang C. J. Clean. Prod., 2018, 204, 437 LINK https://doi.org/10.1016/j.jclepro.2018.09.033 [Google Scholar]
  94. Chen X., Zhou T., Kong J., Fang H., and Chen Y. Sep. Purif. Technol., 2015, 141, 76 LINK https://doi.org/10.1016/j.seppur.2014.11.039 [Google Scholar]
  95. Wang Z., Cheng X., Qiang W., and Huang B. Ceram. Int., 2019, 45, (16), 20016 LINK https://doi.org/10.1016/j.ceramint.2019.06.261 [Google Scholar]
  96. Dong X., Yao J., Zhu W., Huang X., Kuai X., Tang J., Li X., Dai S., Shen L., Yang R., Gao L., and Zhao J. J. Mater. Chem. A, 2019, 7, (35), 20262 LINK https://doi.org/10.1039/c9ta07147d [Google Scholar]
  97. Chen Y., Wang X., Zhang J., Chen B., Xu J., Zhang S., and Zhang L. RSC Adv., 2019, 9, (4), 2172 LINK https://doi.org/10.1039/c8ra09428d [Google Scholar]
  98. Kumar P. S., Sakunthala A., Rao R. P., Adams S., Chowdari B. V. R., and Reddy M. V. Mater. Res. Bull., 2017, 93, 381 LINK https://doi.org/10.1016/j.materresbull.2017.05.035 [Google Scholar]
  99. Zheng F., Deng Q., Zhong W., Ou X., Pan Q., Liu Y., Xiong X., Yang C., Chen Y., and Liu M. ACS Sustain. Chem. Eng., 2018, 6, (12), 16399 LINK https://doi.org/10.1021/acssuschemeng.8b03442 [Google Scholar]
  100. Yuan H., Song W., Wang M., Gu Y., and Chen Y. J. Alloys Compd., 2019, 784, 1311 LINK https://doi.org/10.1016/j.jallcom.2019.01.072 [Google Scholar]
  101. Liu P., Xiao L., Tang Y., Zhu Y., Chen H., and Chen Y. Vacuum, 2018, 156, 317 LINK https://doi.org/10.1016/j.vacuum.2018.08.002 [Google Scholar]
  102. Sa Q., Gratz E., He M., Lu W., Apelian D., and Wang Y. J. Power Sources, 2015, 282, 140 LINK https://doi.org/10.1016/j.jpowsour.2015.02.046 [Google Scholar]
  103. He L.-P., Sun S.-Y., and Yu J.-G. Ceram. Int., 2018, 44, (1), 351 LINK https://doi.org/10.1016/j.ceramint.2017.09.180 [Google Scholar]
  104. Li L., Zhang X., Chen R., Zhao T., Lu J., Wu F., and Amine K. J. Power Sources, 2014, 249, 28 LINK https://doi.org/10.1016/j.jpowsour.2013.10.092 [Google Scholar]
  105. Weng Y., Xu S., Huang G., and Jiang C. J. Hazard. Mater., 2013, 246–247, 163 LINK https://doi.org/10.1016/j.jhazmat.2012.12.028 [Google Scholar]
  106. Meng X., Cao H., Hao J., Ning P., Xu G., and Sun Z. ACS Sustain. Chem. Eng., 2018, 6, (5), 5797 LINK https://doi.org/10.1021/acssuschemeng.7b03880 [Google Scholar]
  107. Ren J., Li R., Liu Y., Cheng Y., Mu D., Zheng R., Liu J., and Dai C. New J. Chem., 2017, 41, (19), 10959 LINK https://doi.org/10.1039/c7nj01206c [Google Scholar]
  108. Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., and Chen R. ACS Sustain. Chem. Eng., 2017, 5, (6), 5224 LINK https://doi.org/10.1021/acssuschemeng.7b00571 [Google Scholar]
  109. Zhang X., Xue Q., Li L., Fan E., Wu F., and Chen R. ACS Sustain. Chem. Eng., 2016, 4, (12), 7041 LINK https://doi.org/10.1021/acssuschemeng.6b01948 [Google Scholar]
  110. Crowe R., and Badyal J. P. S. J. Chem. Soc. Chem. Commun., 1991, (14), 958 LINK https://doi.org/10.1039/c39910000958 [Google Scholar]
  111. Zhao T., Li L., Chen R., Wu H., Zhang X., Chen S., Xie M., Wu F., Lu J., and Amine K. Nano Energy, 2015, 15, 164 LINK https://doi.org/10.1016/j.nanoen.2015.04.013 [Google Scholar]
  112. Jouanneau S., and Dahn J. R. J. Electrochem. Soc., 2004, 151, (10), A1749 LINK https://doi.org/10.1149/1.1793712 [Google Scholar]
  113. Li D., Sasaki Y., Kobayakawa K., Noguchi H., and Sato Y. Electrochim. Acta, 2006, 52, (2), 643 LINK https://doi.org/10.1016/j.electacta.2006.05.044 [Google Scholar]
  114. Tereshatov E. E., Boltoeva M. Y., and Folden C. M. Green Chem., 2016, 18, (17), 4616 LINK https://doi.org/10.1039/c5gc03080c [Google Scholar]
  115. Cui F., Mu W., Wang S., Xin H., Shen H., Xu Q., Zhai Y., and Luo S. Sep. Purif. Technol., 2018, 195, 149 LINK https://doi.org/10.1016/j.seppur.2017.11.071 [Google Scholar]
  116. Tran M. K., Rodrigues M.-T. F., Kato K., Babu G., and Ajayan P. M. Nat. Energy, 2019, 4, (4), 339 LINK https://doi.org/10.1038/s41560-019-0368-4 [Google Scholar]
  117. Wang M., Tan Q., Liu L., and Li J. J. Hazard. Mater., 2019, 380, 120846 LINK https://doi.org/10.1016/j.jhazmat.2019.120846 [Google Scholar]
  118. Sieber T., Ducke J., Rietig A., Langner T., and Acker J. Nanomaterials, 2019, 9, (2), 246 LINK https://doi.org/10.3390/nano9020246 [Google Scholar]
/content/journals/10.1595/205651320X15899814766688
Loading
/content/journals/10.1595/205651320X15899814766688
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error