Skip to content
Volume 65, Issue 3
  • ISSN: 2056-5135


The cathodes of spent ternary lithium-ion batteries (LIBs) are rich in nonferrous metals, such as lithium, nickel, cobalt and manganese, which are important strategic raw materials and also potential sources of environmental pollution. Finding ways to extract these valuable metals cleanly and efficiently from spent cathodes is of great significance for sustainable development of the LIBs industry. In the light of low energy consumption, ‘green’ processing and high recovery efficiency, this paper provides an overview of different recovery technologies to recycle valuable metals from cathode materials of spent ternary LIBs. Development trends and application prospects for different recovery strategies for cathode materials from spent ternary LIBs are also predicted. We conclude that a highly economic recovery system: alkaline solution dissolution/calcination pretreatment → HSO leaching → HO reduction → coprecipitation regeneration of nickel cobalt manganese (NCM) will become the dominant stream for recycling retired NCM batteries. Furthermore, emerging advanced technologies, such as deep eutectic solvents (DESs) extraction and one–step direct regeneration/recovery of NCM cathode materials are preferred methods to substitute conventional regeneration systems in the future.


Article metrics loading...

Loading full text...

Full text loading...



  1. “Statistical Review of World Energy”,69th Edn.,bp Plc, London, UK, 2020, 68 pp LINK [Google Scholar]
  2. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., and Wu F. Chem. Rev., 2020, 120, (14), 7020 LINK [Google Scholar]
  3. Khalifa H., El-Safty S. A., Shenashen M. A., Reda A., and Elmarakbi A. Energy Storage Mater., 2020, 26, 260 LINK [Google Scholar]
  4. Khalifa H., El-Safty S. A., Reda A., Elmarakbi A., Metawa H., and Shenashen M. A. Appl. Mater. Today, 2020, 19, 100590 LINK [Google Scholar]
  5. Khalifa H., El-Safty S. A., Reda A., Shenashen M. A., Selim M. M., Elmarakbi A., and Metawa H. A. Nano-Micro Lett., 2019, 11, 84 LINK [Google Scholar]
  6. Liu W., Oh P., Liu X., Lee M.-J., Cho W., Chae S., Kim Y., and Cho J. Angew. Chem. Int. Ed., 2015, 54, (15), 4440 LINK [Google Scholar]
  7. Desjardins J. ‘China Leading the Charge for Lithium-Ion Megafactories’,Visual Capitalist, Vancouver, Canada, 17th February, 2017 LINK [Google Scholar]
  8. “EV Charging Equipment Market Overview”,Navigant Research, USA, 2019 [Google Scholar]
  9. Zheng X., Zhu Z., Lin X., Zhang Y., He Y., Cao H., and Sun Z. Engineering, 2018, 4, (3), 361 LINK [Google Scholar]
  10. Träger T., Friedrich B., and Weyhe R. Chem. Ing. Tech., 2015, 87, (11), 1550 LINK [Google Scholar]
  11. Li L., Ge J., Chen R., Wu F., Chen S., and Zhang X. Waste Manag., 2010, 30, (12), 2615 LINK [Google Scholar]
  12. Cusenza M. A., Bobba S., Ardente F., Cellura M., and Di Persio F. J. Clean. Prod., 2019, 215, 634 LINK [Google Scholar]
  13. Zheng J., Liu T., Hu Z., Wei Y., Song X., Ren Y., Wang W., Rao M., Lin Y., Chen Z., Lu J., Wang C., Amine K., and Pan F. J. Am. Chem. Soc., 2016, 138, (40), 13326 LINK [Google Scholar]
  14. Song D., Wang X., Nie H., Shi H., Wang D., Guo F., Shi X., and Zhang L. J. Power Sources, 2014, 249, 137 LINK [Google Scholar]
  15. Larcher D., and Tarascon J.-M. Nat. Chem., 2015, 7, (1), 19 LINK [Google Scholar]
  16. Chagnes A., and Pospiech B. J. Chem. Technol. Biotechnol., 2013, 88, (7), 1191 LINK [Google Scholar]
  17. Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J., and Liang B. J. Power Sources, 2008, 177, (2), 512 LINK [Google Scholar]
  18. Li J., Shi P., Wang Z., Chen Y., and Chang C.-C. Chemosphere, 2009, 77, (8), 1132 LINK [Google Scholar]
  19. Huang B., Pan Z., Su X., and An L. J. Power Sources, 2018, 399, 274 LINK [Google Scholar]
  20. Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., and Tripathi V. S. Hydrometallurgy, 2015, 151, 73 LINK [Google Scholar]
  21. da Silveira Leite D., Carvalho P. L. G., de Lemos L. R., Mageste A. B., and Rodrigues G. D. Hydrometallurgy, 2017, 169, 245 LINK [Google Scholar]
  22. Zou H., Gratz E., Apelian D., and Wang Y. Green Chem., 2013, 15, (5), 1183 LINK [Google Scholar]
  23. Shin E. J., Kim S., Noh J.-K., Byun D., Chung K. Y., Kim H.-S., and Cho B.-W. J. Mater. Chem. A, 2015, 3, (21), 11493 LINK [Google Scholar]
  24. Sonoc A. C., Jeswiet J., Murayama N., and Shibata J. Hydrometallurgy, 2018, 175, 133 LINK [Google Scholar]
  25. Chen W.-S., and Ho H.-J. Metals, 2018, 8, (5), 321 LINK [Google Scholar]
  26. Chen X., Luo C., Zhang J., Kong J., and Zhou T. ACS Sustain. Chem. Eng., 2015, 3, (12), 3104 LINK [Google Scholar]
  27. Yang Y., Yang H., Cao H., Wang Z., Liu C., Sun Y., Zhao H., Zhang Y., and Sun Z. J. Clean. Prod., 2019, 236, 117576 LINK [Google Scholar]
  28. Wang M.-M., Zhang C.-C., and Zhang F.-S. Waste Manag., 2016, 51, 239 LINK [Google Scholar]
  29. Pinna E. G., Ruiz M. C., Ojeda M. W., and Rodriguez M. H. Hydrometallurgy, 2017, 167, 66 LINK [Google Scholar]
  30. Meshram P., Abhilash, Pandey B. D., Mankhand T. R., and Deveci H. J. Ind. Eng. Chem., 2016, 43, 117 LINK [Google Scholar]
  31. Yu M., Zhang Z., Xue F., Yang B., Guo G., and Qiu J. Sep. Purif. Technol., 2019, 215, 398 LINK [Google Scholar]
  32. Chen X., Guo C., Ma H., Li J., Zhou T., Cao L., and Kang D. Waste Manag., 2018, 75, 459 LINK [Google Scholar]
  33. Chen X., Fan B., Xu L., Zhou T., and Kong J. J. Clean. Prod., 2016, 112, (4), 3562 LINK [Google Scholar]
  34. Bian D., Sun Y., Li S., Tian Y., Yang Z., Fan X., and Zhang W. Electrochim. Acta, 2016, 190, 134 LINK [Google Scholar]
  35. Li J., Wang G., and Xu Z. J. Hazard. Mater., 2016, 302, 97 LINK [Google Scholar]
  36. Prabaharan G., Barik S. P., Kumar N., and Kumar L. Waste Manag., 2017, 68, 527 LINK [Google Scholar]
  37. Gomaa H., Shenashen M. A., Yamaguchi H., Alamoudi A. S., and El-Safty S. A. Green Chem., 2018, 20, (8), 1841 LINK [Google Scholar]
  38. Gomaa H., El-Safty S., Shenashen M. A., Kawada S., Yamaguchi H., Abdelmottaleb M., and Cheira M. F. ACS Sustain. Chem. Eng., 2018, 6, (11), 13813 LINK [Google Scholar]
  39. Gratz E., Sa Q., Apelian D., and Wang Y. J. Power Sources, 2014, 262, 255 LINK [Google Scholar]
  40. Boxall N. J., Adamek N., Cheng K. Y., Haque N., Bruckard W., and Kaksonen A. H. Waste Manag., 2018, 74, 435 LINK [Google Scholar]
  41. Li M., Lu J., Chen Z., and Amine K. Adv. Mater., 2018, 30, (33), 1800561 LINK [Google Scholar]
  42. Pillot C. ‘The Rechargeable Battery Market and Main Trends 2015-2025’,18th International Meeting on Lithium Batteries,20th June, 2016,Chicago, USA,Avicenne Energy, Paris, France, 2016 LINK [Google Scholar]
  43. Zhou S., Cui Z., Mei T., Wang X., and Qian Y. Mater. Today Energy, 2019, 14, 100363 LINK [Google Scholar]
  44. Liu S., Xiong L., and He C. J. Power Sources, 2014, 261, 285 LINK [Google Scholar]
  45. Shi Y., Zhang M., Meng Y. S., and Chen Z. Adv. Energy Mater., 2019, 9, (20), 1900454 LINK [Google Scholar]
  46. Randell P. “Waste Lithium-Ion Battery Projections: Lithium-Ion Forums: Recycling, Transport and Warehousing”,Randall Environmental Consulting Pty Ltd, Woodend, Australia, 19th July, 2016, 18 pp LINK [Google Scholar]
  47. Lv W., Wang Z., Cao H., Sun Y., Zhang Y., and Sun Z. ACS Sustain. Chem. Eng., 2018, 6, (2), 1504 LINK [Google Scholar]
  48. Zeng X., Li J., and Singh N. Crit. Rev. Environ. Sci. Technol., 2014, 44, (10), 1129 LINK [Google Scholar]
  49. Ribière P., Grugeon S., Morcrette M., Boyanov S., Laruelle S., and Marlair G. Energy Environ. Sci., 2012, 5, (1), 5271 LINK [Google Scholar]
  50. ‘National Minerals Information Center: Commodity Statistics and Information’,United States Geological Survey (USGS), Reston, USA: (Accessed on 14th May 2021) [Google Scholar]
  51. Boxall N. J., King S., Cheng K. Y., Gumulya Y., Bruckard W., and Kaksonen A. H. Miner. Eng., 2018, 128, 45 LINK [Google Scholar]
  52. “Study on the Review of the List of Critical Raw Materials: Critical Raw Materials Factsheets”,European Union, Brussels, Belgium, June, 2017, 515 pp LINK [Google Scholar]
  53. El Haddad J., Canioni L., and Bousquet B. Spectrochim. Acta Part B: At. Spectrosc., 2014, 101, 171 LINK [Google Scholar]
  54. Yang Y., Xu S., and He Y. Waste Manag., 2017, 64, 219 LINK [Google Scholar]
  55. Li H., Chen Y., Song W., and Feng Z. Chem. Ind. Eng. Prog., 2019, 38, (02), 921 LINK [Google Scholar]
  56. Yao Y., Zhu M., Zhao Z., Tong B., Fan Y., and Hua Z. ACS Sustain. Chem. Eng., 2018, 6, (11), 13611 LINK [Google Scholar]
  57. Zhao S., Li G., He W., Huang J., and Zhu H. Waste Manag. Res., 2019, 37, (11), 1142 LINK [Google Scholar]
  58. Fu Y., He Y., Chen H., Ye C., Lu Q., Li R., Xie W., and Wang J. J. Ind. Eng. Chem., 2019, 79, 154 LINK [Google Scholar]
  59. Nan J., Han D., and Zuo X. J. Power Sources, 2005, 152, 278 LINK [Google Scholar]
  60. Paulino J. F., Busnardo N. G., and Afonso J. C. J. Hazard. Mater., 2008, 150, (3), 843 LINK [Google Scholar]
  61. Zhang X., Xie Y., Cao H., Nawaz F., and Zhang Y. Waste Manag., 2014, 34, (9), 1715 LINK [Google Scholar]
  62. Almeida J. R., Moura M. N., Barrada R. V., Barbieri E. M. S., Carneiro M. T. W. D., Ferreira S. A. D., de Fátima Fontes Lelis M., de Freitas M. B. J. G., and Brandão G. P. Sci. Total Environ., 2019, 685, 589 LINK [Google Scholar]
  63. Krüger S., Hanisch C., Kwade A., Winter M., and Nowak S. J. Electroanal. Chem., 2014, 726, 91 LINK [Google Scholar]
  64. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manag., 2015, 46, 523 LINK [Google Scholar]
  65. Hu J., Zhang J., Li H., Chen Y., and Wang C. J. Power Sources, 2017, 351, 192 LINK [Google Scholar]
  66. Meshram P., Pandey B. D., and Mankhand T. R. Waste Manag., 2015, 45, 306 LINK [Google Scholar]
  67. Xiao J., Li J., and Xu Z. Environ. Sci. Technol., 2020, 54, (1), 9 LINK [Google Scholar]
  68. Joulié M., Laucournet R., and Billy E. J. Power Sources, 2014, 247, 551 LINK [Google Scholar]
  69. Meshram P., Abhilash, Pandey B. D., Mankhand T. R., and Deveci H. J. Metals, 2016, 68, (10), 2613 LINK [Google Scholar]
  70. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manag., 2017, 64, 171 LINK [Google Scholar]
  71. He L.-P., Sun S.-Y., Mu Y.-Y., Song X.-F., and Yu J.-G. ACS Sustain. Chem. Eng., 2017, 5, (1), 714 LINK [Google Scholar]
  72. Gao W., Zhang X., Zheng X., Lin X., Cao H., Zhang Y., and Sun Z. Environ. Sci. Technol., 2017, 51, (3), 1662 LINK [Google Scholar]
  73. Zhang X., Cao H., Xie Y., Ning P., An H., You H., and Nawaz F. Sep. Purif. Technol., 2015, 150, 186 LINK [Google Scholar]
  74. Sun C., Xu L., Chen X., Qiu T., and Zhou T. Waste Manage. Res.: J. Sustain. Circ. Econ., 2018, 36, (2), 113 LINK [Google Scholar]
  75. Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., and Sun Z. J. Clean. Prod., 2018, 178, 833 LINK [Google Scholar]
  76. Liu P., Xiao L., Chen Y., Tang Y., Wu J., and Chen H. J. Alloys Compd., 2019, 783, 743 LINK [Google Scholar]
  77. Zhuang L., Sun C., Zhou T., Li H., and Dai A. Waste Manag., 2019, 85, 175 LINK [Google Scholar]
  78. Willner J., Kadukova J., Fornalczyk A., and Saternus M. Metalurgija, 2015, 54, (1), 255 LINK [Google Scholar]
  79. Biswal B. K., Jadhav U. U., Madhaiyan M., Ji L., Yang E.-H., and Cao B. ACS Sustain. Chem. Eng., 2018, 6, (9), 12343 LINK [Google Scholar]
  80. Niu Z., Huang Q., Xin B., Qi C., Hu J., Chen S., and Li Y. J. Chem. Technol. Biotechnol., 2016, 91, (3), 608 LINK [Google Scholar]
  81. Bahaloo-Horeh N., and Mousavi S. M. Waste Manag., 2017, 60, 666 LINK [Google Scholar]
  82. Naseri T., Bahaloo-Horeh N., and Mousavi S. M. J. Environ. Manage., 2019, 235, 357 LINK [Google Scholar]
  83. Heydarian A., Mousavi S. M., Vakilchap F., and Baniasadi M. J. Power Sources, 2018, 378, 19 LINK [Google Scholar]
  84. Bahaloo-Horeh N., Mousavi S. M., and Baniasadi M. J. Clean. Prod., 2018, 197, (1), 1546 LINK [Google Scholar]
  85. Horeh N. B., Mousavi S. M., and Shojaosadati S. A. J. Power Sources, 2016, 320, 257 LINK [Google Scholar]
  86. Xin Y., Guo X., Chen S., Wang J., Wu F., and Xin B. J. Clean. Prod., 2016, 116, 249 LINK [Google Scholar]
  87. Swain B. J. Chem. Technol. Biotechnol., 2018, 93, (2), 311 LINK [Google Scholar]
  88. Huang T., Song D., Liu L., and Zhang S. Sep. Purif. Technol., 2019, 215, 51 LINK [Google Scholar]
  89. Li H., Xing S., Liu Y., Li F., Guo H., and Kuang G. ACS Sustain. Chem. Eng., 2017, 5, (9), 8017 LINK [Google Scholar]
  90. Zhang X., Li L., Fan E., Xue Q., Bian Y., Wu F., and Chen R. Chem. Soc. Rev., 2018, 47, (19), 7239 LINK [Google Scholar]
  91. Meshram P., Pandey B. D., and Mankhand T. R. Chem. Eng. J., 2015, 281, 418 LINK [Google Scholar]
  92. Granata G., Pagnanelli F., Moscardini E., Takacova Z., Havlik T., and Toro L. J. Power Sources, 2012, 212, 205 LINK [Google Scholar]
  93. Zhang J., Hu J., Zhang W., Chen Y., and Wang C. J. Clean. Prod., 2018, 204, 437 LINK [Google Scholar]
  94. Chen X., Zhou T., Kong J., Fang H., and Chen Y. Sep. Purif. Technol., 2015, 141, 76 LINK [Google Scholar]
  95. Wang Z., Cheng X., Qiang W., and Huang B. Ceram. Int., 2019, 45, (16), 20016 LINK [Google Scholar]
  96. Dong X., Yao J., Zhu W., Huang X., Kuai X., Tang J., Li X., Dai S., Shen L., Yang R., Gao L., and Zhao J. J. Mater. Chem. A, 2019, 7, (35), 20262 LINK [Google Scholar]
  97. Chen Y., Wang X., Zhang J., Chen B., Xu J., Zhang S., and Zhang L. RSC Adv., 2019, 9, (4), 2172 LINK [Google Scholar]
  98. Kumar P. S., Sakunthala A., Rao R. P., Adams S., Chowdari B. V. R., and Reddy M. V. Mater. Res. Bull., 2017, 93, 381 LINK [Google Scholar]
  99. Zheng F., Deng Q., Zhong W., Ou X., Pan Q., Liu Y., Xiong X., Yang C., Chen Y., and Liu M. ACS Sustain. Chem. Eng., 2018, 6, (12), 16399 LINK [Google Scholar]
  100. Yuan H., Song W., Wang M., Gu Y., and Chen Y. J. Alloys Compd., 2019, 784, 1311 LINK [Google Scholar]
  101. Liu P., Xiao L., Tang Y., Zhu Y., Chen H., and Chen Y. Vacuum, 2018, 156, 317 LINK [Google Scholar]
  102. Sa Q., Gratz E., He M., Lu W., Apelian D., and Wang Y. J. Power Sources, 2015, 282, 140 LINK [Google Scholar]
  103. He L.-P., Sun S.-Y., and Yu J.-G. Ceram. Int., 2018, 44, (1), 351 LINK [Google Scholar]
  104. Li L., Zhang X., Chen R., Zhao T., Lu J., Wu F., and Amine K. J. Power Sources, 2014, 249, 28 LINK [Google Scholar]
  105. Weng Y., Xu S., Huang G., and Jiang C. J. Hazard. Mater., 2013, 246–247, 163 LINK [Google Scholar]
  106. Meng X., Cao H., Hao J., Ning P., Xu G., and Sun Z. ACS Sustain. Chem. Eng., 2018, 6, (5), 5797 LINK [Google Scholar]
  107. Ren J., Li R., Liu Y., Cheng Y., Mu D., Zheng R., Liu J., and Dai C. New J. Chem., 2017, 41, (19), 10959 LINK [Google Scholar]
  108. Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., and Chen R. ACS Sustain. Chem. Eng., 2017, 5, (6), 5224 LINK [Google Scholar]
  109. Zhang X., Xue Q., Li L., Fan E., Wu F., and Chen R. ACS Sustain. Chem. Eng., 2016, 4, (12), 7041 LINK [Google Scholar]
  110. Crowe R., and Badyal J. P. S. J. Chem. Soc. Chem. Commun., 1991, (14), 958 LINK [Google Scholar]
  111. Zhao T., Li L., Chen R., Wu H., Zhang X., Chen S., Xie M., Wu F., Lu J., and Amine K. Nano Energy, 2015, 15, 164 LINK [Google Scholar]
  112. Jouanneau S., and Dahn J. R. J. Electrochem. Soc., 2004, 151, (10), A1749 LINK [Google Scholar]
  113. Li D., Sasaki Y., Kobayakawa K., Noguchi H., and Sato Y. Electrochim. Acta, 2006, 52, (2), 643 LINK [Google Scholar]
  114. Tereshatov E. E., Boltoeva M. Y., and Folden C. M. Green Chem., 2016, 18, (17), 4616 LINK [Google Scholar]
  115. Cui F., Mu W., Wang S., Xin H., Shen H., Xu Q., Zhai Y., and Luo S. Sep. Purif. Technol., 2018, 195, 149 LINK [Google Scholar]
  116. Tran M. K., Rodrigues M.-T. F., Kato K., Babu G., and Ajayan P. M. Nat. Energy, 2019, 4, (4), 339 LINK [Google Scholar]
  117. Wang M., Tan Q., Liu L., and Li J. J. Hazard. Mater., 2019, 380, 120846 LINK [Google Scholar]
  118. Sieber T., Ducke J., Rietig A., Langner T., and Acker J. Nanomaterials, 2019, 9, (2), 246 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error